首页> 外文期刊>Reliability, IEEE Transactions on >A Comparison of Three Methods for Calculating Lower Confidence Limits on System Reliability Using Binomial Component Data
【24h】

A Comparison of Three Methods for Calculating Lower Confidence Limits on System Reliability Using Binomial Component Data

机译:使用二项式分量数据计算系统可靠性下限置信度的三种方法的比较

获取原文

摘要

The Maximus, bootstrap, and Bayes methods can be useful in calculating lower s-confidence limits on system reliability using binomial component test data. The bootstrap and Bayes methods use Monte Carlo simulation, while the Maximus method is closed-form. The Bayes method is based on noninformative component prior distributions. The three methods are compared by means of Monte Carlo simulation using 20 simple through moderately complex examples. The simulation was generally restricted to the region of high reliability components. Sample coverages and average interval lengths are both used as performance measures. In addition to insights regarding the adequacy and desirability of each method, the comparison reveals the following regions of superior performance: 1. The Maximus method is generally superior for: a) moderate to large series systems of reliable components with small quantities of test data per component, and b) small series systems of repeated components. 2. The bootstrap method is generally superior for highly reliable and redundant systems. 3. The Bayes method is generally superior for: a) moderate to large series systems of reliable components with moderate to large numbers of component tests, and b) small series systems of reliable non-repeated components.
机译:Maximus,bootstrap和Bayes方法在使用二项式分量测试数据来计算系统可靠性的s置信下限时很有用。引导程序和贝叶斯方法使用蒙特卡罗模拟,而马克西姆斯方法是封闭形式。贝叶斯方法基于非信息成分先验分布。通过蒙特卡罗仿真,使用20个简单到中等复杂的示例对这三种方法进行了比较。该模拟通常仅限于高可靠性组件的区域。样本覆盖率和平均间隔长度均用作性能指标。除了对每种方法的充分性和合意性的见解之外,比较还显示出以下方面的优越性能:1. Maximus方法通常在以下方面具有优越性:a)中型到大型系列的可靠组件,每套系统都有少量测试数据b)重复组件的小系列系统。 2.对于高度可靠和冗余的系统,自举方法通常更好。 3.贝叶斯方法通常在以下方面更胜一筹:a)可靠组件的中型到大型系列系统,具有中型到大量组件测试,以及b)可靠的非重复组件的小系列系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号