mosfets have the potential to replace Si insulated gate b'/> Performance Evaluation of High-Power SiC MOSFET Modules in Comparison to Si IGBT Modules
首页> 外文期刊>IEEE Transactions on Power Electronics >Performance Evaluation of High-Power SiC MOSFET Modules in Comparison to Si IGBT Modules
【24h】

Performance Evaluation of High-Power SiC MOSFET Modules in Comparison to Si IGBT Modules

机译:与Si IGBT模块相比,大功率SiC MOSFET模块的性能评估

获取原文
获取原文并翻译 | 示例
           

摘要

The higher voltage blocking capability and faster switching speed of silicon-carbide (SiC)mosfets have the potential to replace Si insulated gate bipolar transistors (IGBTs) in medium-/low-voltage and high-power applications. In this paper, a state-of-the-art commercially available 325 A, 1700 V SiCmosfetmodule has been fully characterized under various load currents, bus voltages, and gate resistors to reveal their switching capability. Meanwhile, Si IGBT modules with similar power ratings are also tested under the same conditions. From the test results, several interesting points have been obtained: different to the Si IGBT module, the over-shoot current of the SiCmosfetmodule increases linearly with the increase of the load current and it has been explained by a model of the over-shoot current proposed in this paper; the induced negative gate voltage due to the complementary device turn-off(crosstalk effect) is more harmful to the SiCmosfetmodule than the induced positive gate voltage during turn-onwhen the gate off-voltage is –6 V; the maximumdv/dtanddi/dt(electromagnetic interference) during switching transients of the SiCmosfetmodule are close to those of the Si IGBT module when the gate resistance is larger than 8 Ω but the switching loss of the SiCmosfetmodule is much smaller; the switching losses of the Si IGBT module are greater than those of the SiCmosfetmodule even when the gate resistance of the former is reduced to zero. An accurate power loss model, which is suitable for a three-phase two-level converter based on SiCmosfetmodules considering the power loss of the parasitic capacitance, has been presented and verified in this paper. From the model, a 96.2% efficiency can be achieved at the switching frequency of 80 kHz and the power of 100 kW.
机译:碳化硅(SiC)的更高的电压阻挡能力和更快的开关速度 n mosfet ns具有在中/低压和大功率应用中替代硅绝缘栅双极型晶体管(IGBT)的潜力。在本文中,介绍了最新的市售325 A,1700 V SiC n mosfet n模块已在各种负载电流,总线电压和栅极电阻器下得到充分表征,以揭示其开关能力。同时,具有相同额定功率的Si IGBT模块也在相同条件下进行了测试。从测试结果中获得了一些有趣的观点:与Si IGBT模块不同,SiC n mosfet n模块随着负载电流的增加而线性增加,这已经由本文提出的过冲电流模型进行了解释;由于互补器件的导通- n 关闭 n(串扰效应)而引起的负栅极电压为对SiC n mosfet n模块的危害比在转弯期间感应到的正栅极电压更有害。当栅极截止电压为–6 V时,在 n上显示sc xmlns:xlink = “ http://www.w3.org/1999/xlink ”>。最大 n <斜体xmlns:xlink = “ http://www.w3.org/1999/xlink ”> dv n / n <斜体xmlns:xlink = “ http:// www.w3.org/1999/xlink">dtand di SiC开关瞬态期间的 n / n dt n(电磁干扰) n当栅极电阻大于8Ω但开关时,xmlns:xlink = “ http://www.w3.org/1999/xlink ”> mosfet nmodule与Si IGBT模块接近SiC n mosfet n模块的损失要小得多; Si IGBT模块的开关损耗大于SiC n mosfet n模块的开关损耗前者的栅极电阻降至零。一种精确的功率损耗模型,适用于基于SiC n mosfet 的三相两电平转换器本文已经提出并验证了考虑寄生电容功率损耗的sc> n模块。根据该模型,在80kHz的开关频率和100 kW的功率下可以达到96.2%的效率。

著录项

  • 来源
    《IEEE Transactions on Power Electronics》 |2019年第2期|1181-1196|共16页
  • 作者单位

    School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MOSFET; Silicon carbide; Insulated gate bipolar transistors; Silicon; Logic gates; Semiconductor device modeling; Switches;

    机译:MOSFET;碳化硅;绝缘栅双极型晶体管;硅;逻辑门;半导体器件建模;开关;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号