首页> 外文期刊>Neural Systems and Rehabilitation Engineering, IEEE Transactions on >Prediction of Optimal Facial Electromyographic Sensor Configurations for Human–Machine Interface Control
【24h】

Prediction of Optimal Facial Electromyographic Sensor Configurations for Human–Machine Interface Control

机译:人机界面控制的最佳面部肌电传感器配置预测

获取原文
获取原文并翻译 | 示例

摘要

Surface electromyography (sEMG) is a promising computer access method for individuals with motor impairments. However, optimal sensor placement is a tedious task requiring trial-and-error by an expert, particularly when recording from facial musculature likely to be spared in individuals with neurological impairments. We sought to reduce the sEMG sensor configuration complexity by using quantitative signal features extracted from a short calibration task to predict human-machine interface (HMI) performance. A cursor control system allowed individuals to activate specific sEMG-targeted muscles to control an onscreen cursor and navigate a target selection task. The task was repeated for a range of sensor configurations to elicit a range of signal qualities. Signal features were extracted from the calibration of each configuration and examined via a principle component factor analysis in order to predict the HMI performance during subsequent tasks. Feature components most influenced by the energy and the complexity of the EMG signal and muscle activity between the sensors were significantly predictive of the HMI performance. However, configuration order had a greater effect on performance than the configurations, suggesting that non-experts can place sEMG sensors in the vicinity of usable muscle sites for computer access and healthy individuals will learn to efficiently control the HMI system.
机译:表面肌电图(sEMG)是一种用于运动障碍者的有前途的计算机访问方法。然而,最佳的传感器放置是一项繁琐的任务,需要专家反复试验,特别是在从面部肌肉组织进行记录时,尤其是在神经功能缺损的患者中可能会幸免。我们试图通过使用从短期校准任务中提取的定量信号特征来预测人机界面(HMI)性能来降低sEMG传感器配置的复杂性。光标控制系统允许个人激活针对sEMG的特定肌肉,以控制屏幕上的光标并导航目标选择任务。对一系列传感器配置重复此任务,以引发一系列信号质量。从每个配置的校准中提取信号特征,并通过主成分因子分析进行检查,以预测后续任务中的HMI性能。受能量,EMG信号的复杂性和传感器之间的肌肉活动影响最大的功能部件可显着预测HMI性能。但是,配置顺序比配置对性能的影响更大,这表明非专家可以将sEMG传感器放置在可用的肌肉部位附近,以进行计算机访问,健康的个体将学会有效地控制HMI系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号