首页> 外文期刊>Network and Service Management, IEEE Transactions on >Online Anomaly Detection Leveraging Stream-Based Clustering and Real-Time Telemetry
【24h】

Online Anomaly Detection Leveraging Stream-Based Clustering and Real-Time Telemetry

机译:在线异常检测利用基于流的聚类和实时遥测

获取原文
获取原文并翻译 | 示例

摘要

Recent technology evolution allows network equipment to continuously stream a wealth of "telemetry" information, which pertains to multiple protocols and layers of the stack, at a very fine spatial-grain and high-frequency. This deluge of telemetry data clearly offers new opportunities for network control and troubleshooting, but also poses a serious challenge for what concerns its real-time processing. We tackle this challenge by applying streaming machine-learning techniques to the continuous flow of control and data-plane telemetry data, with the purpose of real-time detection of anomalies. In particular, we implement an anomaly detection engine that leverages DenStream, an unsupervised clustering technique, and apply it to features collected from a large-scale testbed comprising tens of routers traversed up to 3Terabit/s worth of real application traffic. We contrast DenStream with offline algorithms such as DBScan and Local Outlier Factor (LOF), as well as online algorithms such as the windowed version of DBScan, ExactSTORM, Continuous Outlier Detection (COD) and Robust Random Cut Forest (RRCF). Our experimental campaign compares these seven algorithms under both accuracy and computational complexity viewpoints: results testify that DenStream (i) achieves detection results on par with RRCF, the best performing algorithm and (ii) is significantly faster than other approaches, notably over two orders of magnitude faster than RRCF. In spirit with the recent trend toward reproducibility of results, we make our code available as open source to the scientific community.
机译:最近的技术演变允许网络设备持续流动大量的“遥测”信息,这与堆栈的多种协议和层,以非常精细的空间晶粒和高频。这种遥测数据卓越的数据显然为网络控制和故障排除提供了新的机会,但也为其实时处理问题提出了严峻的挑战。我们通过将流式计算机学习技术应用于连续的控制和数据平面遥测数据来解决这一挑战,目的是实时检测异常。特别是,我们实施一种异常检测引擎,它利用DeDstream,无监督的聚类技术,并将其应用于从包括数十路由器的大规模测试平台收集的特征,其遍历为3Terabit / s的实际应用流量。我们将Denstream与离线算法(如DBSCAN和本地异常因素(LOF))进行对比,以及在线算法,如DBSCAN的窗口版本,EmpleStorm,连续异常值检测(COD)和鲁棒随机切割林(RRCF)。我们的实验活动将这七种算法比较了精度和计算复杂性观点:结果证明了Denstream(i)实现了与RRCF相对的检测结果,最佳性能算法和(II)明显比其他方法更快,特别是超过两个订单幅度比RRCF快。在精神上随着近期结果的再现性的趋势,我们将我们的代码作为科学界提供为开源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号