首页> 外文期刊>Concurrency and computation: practice and experience >Online behavior classification for anomaly detection in self-x real-time systems
【24h】

Online behavior classification for anomaly detection in self-x real-time systems

机译:用于self-x实时系统中异常检测的在线行为分类

获取原文
获取原文并翻译 | 示例

摘要

Autonomous adaptation in self-adapting embedded real-time systems introduces novel risks as it may lead to unforeseen system behavior. An anomaly detection framework integrated in a real-time operating system can ease the identification of such suspicious novel behavior and, thereby, offers the potential to enhance the reliability of the considered self-x system. However, anomaly detection is based on knowledge about normal behavior. When dealing with self-reconfiguring applications, normal behavior changes. Hence, knowledge base requires adaptation or even re-construction at runtime. The stringent restrictions of real-time systems considering runtime and memory consumption make this task to a really challenging problem. We present our idea for online construction of application behavior knowledge that does not rely on training phase. The applications' behavior is defined by the application's system call invocations. For the knowledge base, we exploit suffix trees as they offer potentials to represent application behavior patterns and associated information in a compact manner. The online algorithm provided by suffix trees is a basis to construct the knowledge base with low computational effort. Anomaly detection and classification is integrated into the online construction method. New behavioral patterns do not unconditionally update the behavior knowledge base. They are evaluated in a context-related manner inspired by Danger Theory, a special discipline of artificial immune systems. Copyright © 2015 John Wiley & Sons, Ltd.
机译:自适应嵌入式实时系统中的自主适应引入了新的风险,因为它可能导致无法预料的系统行为。集成在实时操作系统中的异常检测框架可以简化此类可疑新颖行为的识别,从而提供增强所考虑的self-x系统可靠性的潜力。但是,异常检测是基于有关正常行为的知识。在处理自我重新配置的应用程序时,正常行为会发生变化。因此,知识库需要在运行时进行调整甚至重新构建。考虑到运行时和内存消耗的实时系统的严格限制使此任务成为一个真正具有挑战性的问题。我们提出了不依赖于培训阶段的在线构建应用程序行为知识的想法。应用程序的行为由应用程序的系统调用调用定义。对于知识库,我们利用后缀树,因为它们提供了以紧凑的方式表示应用程序行为模式和相关信息的潜力。后缀树提供的在线算法是构建计算量少的知识库的基础。异常检测和分类已集成到在线构建方法中。新的行为模式不会无条件地更新行为知识库。在危险理论(人工免疫系统的特殊学科)的启发下,以与情境相关的方式对它们进行评估。版权所有©2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号