首页> 外文期刊>IEEE transactions on network and service management >Online Learning and Placement Algorithms for Efficient Delivery of User Generated Contents in Telco-CDNs
【24h】

Online Learning and Placement Algorithms for Efficient Delivery of User Generated Contents in Telco-CDNs

机译:在线学习和放置算法,可在Telco-CDN中高效交付用户生成的内容

获取原文
获取原文并翻译 | 示例

摘要

User generated content (UGC) makes up a significant portion of Internet traffic. As opposed to other content, UGC has so far been left outside over-the-top providing network operators content distribution networks (telco-CDN) due to the difficulty in determining optimised placement of such content. The side effect of this is that UGC content is not placed close to end users and therefore occupy unnecessary network resources. The difficulty in determining optimal placement of UGC stems from the different geographical and dynamic behaviour of the content generators, and a further complication is that with UGC, it is necessary to place content in real-time which this has an impact on performance optimality. Even though CDNs have been widely studied in the literature, little attention has been given to the challenging case of UGC placement. In this paper, we propose an on-line placement algorithm and compare its performance with the off-line counterpart based on integer programming, both under the assumption that the popularity of content is known to the algorithms. In order to determine the popularity, we present an on-line learning model to predict spatial patterns in content requests. Furthermore, we couple the model with an algorithm for learning the early popularity of content, i.e., shortly after the content becomes known. We show that together, these approaches enable service providers to effectively place UGC and minimise the cost of serving UGC in their networks.
机译:用户生成的内容(UGC)占Internet流量的很大一部分。与其他内容相反,由于难以确定此类内容的优化放置,迄今为止,UGC不在提供网络运营商内容分发网络(telco-CDN)的范围之外。这样做的副作用是,UGC内容不会放置在最终用户附近,因此会占用不必要的网络资源。确定UGC最佳放置的困难源于内容生成器的不同地理和动态行为,而另一个复杂之处在于,使用UGC时,必须实时放置内容,这会影响性能的最优性。尽管在文献中对CDN进行了广泛的研究,但对具有挑战性的UGC放置情况却很少关注。在本文中,我们提出了一种在线放置算法,并将其性能与基于整数编程的离线放置算法进行比较,两者均基于算法已知内容的普及程度的假设。为了确定受欢迎程度,我们提出了一种在线学习模型来预测内容请求中的空间模式。此外,我们将模型与用于学习内容的早期流行度的算法(即,在内容公开后不久)相结合。我们共同证明,这些方法使服务提供商能够有效地放置UGC,并最大程度地降低在其网络中服务UGC的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号