首页> 外文期刊>IEEE transactions on network and service management >User Preference Aware Task Coordination and Proactive Bandwidth Allocation in a FiWi-Based Human–Agent–Robot Teamwork Ecosystem
【24h】

User Preference Aware Task Coordination and Proactive Bandwidth Allocation in a FiWi-Based Human–Agent–Robot Teamwork Ecosystem

机译:基于FiWi的人,代理,机器人团队生态系统中的用户偏好感知任务协调和主动带宽分配

获取原文
获取原文并翻译 | 示例

摘要

Cooperative human-agent-robot teamwork (HART) provides enormous opportunities for present-day human users to orchestrate their real-time tasks in a coordinated fashion. However, given human users' different preferences for real-time HART task execution, e.g., lower delay and monetary cost, the selection of proper task coordination services has emerged as an important research problem by taking dynamically changing cloud agent/robot resources, network bandwidth utilization, as well as delay-sensitive and delay-tolerant HART task properties into account. To cope with these challenges, in this paper, we explore the synergy between caching, computation, and communications for achieving cost-effective HART task execution. To exploit the locality of different HART-centric tasks and localonlocal cloud agent/robot resources for different HART-centric task execution, we consider integrated fiber-wireless (FiWi) enhanced networks with computation task offloading as well as fiber backhaul sharing and WiFi offloading capabilities. More precisely, to minimize task execution delay and monetary cost, we propose a user preference aware HART task coordination framework that selects the appropriate dedicated or non-dedicated robot and cloud agent for given caching and computing HART task execution requirements. Further, to cope with varying bandwidth resources, we propose a proactive bandwidth allocation policy for the execution of both delay-sensitive and delay-tolerant HART tasks execution across FiWi enhanced network infrastructures. We evaluate the performance of our proposed preference aware task offloading scheme and compare it to various baseline schemes in terms of different key performance indicators, including the task execution time and monetary cost saving ratio, communication to computation ratio, and offloading gain overhead ratio. Our findings indicate that the proposed delay cost saving policy exhibits a 27% higher task execution time saving ratio and a 48% lower monetary cost saving ratio than the proposed monetary cost saving policy in a typical scenario.
机译:协作的人工代理-机器人团队合作(HART)为当今的人类用户提供了巨大的机会,以协调的方式协调其实时任务。但是,鉴于人类用户对实时HART任务执行的不同偏好,例如更低的延迟和金钱成本,通过动态地更改云代理/机器人资源,网络带宽,选择合适的任务协调服务已成为一个重要的研究问题。利用率,以及延迟敏感和延迟容忍的HART任务属性都考虑在内。为了应对这些挑战,在本文中,我们探索了缓存,计算和通信之间的协同作用,以实现具有成本效益的HART任务执行。为了利用不同的以HART为中心的任务的本地性和本地/非本地云代理/机器人资源来执行以HART为中心的不同任务,我们考虑了集成了计算任务卸载,光纤回程共享和WiFi的集成式光纤(FiWi)增强网络。卸载功能。更确切地说,为了最大程度地减少任务执行延迟和金钱成本,我们提出了一种用户偏好感知型HART任务协调框架,该框架针对给定的缓存和计算HART任务执行要求选择适当的专用或非专用机器人和云代理。此外,为了应对变化的带宽资源,我们提出了一种主动带宽分配策略,用于在FiWi增强型网络基础架构中同时执行对延迟敏感和对延迟敏感的HART任务。我们评估了我们提出的偏好感知任务卸载方案的性能,并根据不同的关键性能指标将其与各种基准方案进行了比较,这些关键性能指标包括任务执行时间和货币成本节省率,通信与计算率以及卸载增益开销率。我们的发现表明,在典型情况下,拟议的延迟成本节省策略与拟议的货币成本节省策略相比,具有27%的任务执行时间节省率和48%的货币成本节省率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号