首页> 外文期刊>IEEE transactions on network and service management >User Preference Aware Task Coordination and Proactive Bandwidth Allocation in a FiWi-Based Human–Agent–Robot Teamwork Ecosystem
【24h】

User Preference Aware Task Coordination and Proactive Bandwidth Allocation in a FiWi-Based Human–Agent–Robot Teamwork Ecosystem

机译:用户偏好意识到基于FIWI的人员 - 代理机器人团队合作生态系统中的任务协调和主动带宽分配

获取原文
获取原文并翻译 | 示例

摘要

Cooperative human-agent-robot teamwork (HART) provides enormous opportunities for present-day human users to orchestrate their real-time tasks in a coordinated fashion. However, given human users' different preferences for real-time HART task execution, e.g., lower delay and monetary cost, the selection of proper task coordination services has emerged as an important research problem by taking dynamically changing cloud agent/robot resources, network bandwidth utilization, as well as delay-sensitive and delay-tolerant HART task properties into account. To cope with these challenges, in this paper, we explore the synergy between caching, computation, and communications for achieving cost-effective HART task execution. To exploit the locality of different HART-centric tasks and localonlocal cloud agent/robot resources for different HART-centric task execution, we consider integrated fiber-wireless (FiWi) enhanced networks with computation task offloading as well as fiber backhaul sharing and WiFi offloading capabilities. More precisely, to minimize task execution delay and monetary cost, we propose a user preference aware HART task coordination framework that selects the appropriate dedicated or non-dedicated robot and cloud agent for given caching and computing HART task execution requirements. Further, to cope with varying bandwidth resources, we propose a proactive bandwidth allocation policy for the execution of both delay-sensitive and delay-tolerant HART tasks execution across FiWi enhanced network infrastructures. We evaluate the performance of our proposed preference aware task offloading scheme and compare it to various baseline schemes in terms of different key performance indicators, including the task execution time and monetary cost saving ratio, communication to computation ratio, and offloading gain overhead ratio. Our findings indicate that the proposed delay cost saving policy exhibits a 27% higher task execution time saving ratio and a 48% lower monetary cost saving ratio than the proposed monetary cost saving policy in a typical scenario.
机译:合作人员 - 代理机器人团队合作(HART)为当今的人类用户提供了巨大的机会,以协调时尚协调他们的实时任务。然而,鉴于人类用户对实时HART任务执行的不同偏好,例如延迟和货币成本,通过采用动态变化的云代理/机器人资源,网络带宽来选择适当的任务协调服务作为一个重要的研究问题。利用率,以及延迟敏感和延迟容忍HART任务属性考虑。为了应对这些挑战,在本文中,我们探讨了实现成本效益HART任务执行的缓存,计算和通信之间的协同作用。为了利用不同HART为中心的任务和本地/非本地云代理/机器人资源的局域网,我们考虑集成的光纤 - 无线(FIWI)增强网络,其中具有计算任务卸载以及光纤回程共享和WiFi卸载能力。更确切地说,为了最大限度地减少任务执行延迟和货币成本,我们提出了一个用户偏好意识的HART任务协调框架,可为给定缓存和计算HART任务执行要求选择适当的专用或非专用机器人和云代理。此外,为了应对不同的带宽资源,我们提出了一个主动带宽分配策略,用于执行延迟敏感和延迟容忍HART任务在FIWI增强的网络基础架构上执行。我们评估我们所提出的偏好意识任务卸载方案的表现,并在不同的关键性能指标方面将其与各种基线方案进行比较,包括任务执行时间和货币成本节约率,与计算率通信,以及卸载增益开销比率。我们的调查结果表明,拟议的延迟成本储蓄政策展示了27%的任务执行时间升高率,比典型情景中提出的货币成本节约政策更高的金钱成本节约率下降了48%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号