首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Joint Inference for Aspect-Level Sentiment Analysis by Deep Neural Networks and Linguistic Hints
【24h】

Joint Inference for Aspect-Level Sentiment Analysis by Deep Neural Networks and Linguistic Hints

机译:深度神经网络和语言提示的方面情绪分析联合推断

获取原文
获取原文并翻译 | 示例

摘要

The state-of-the-art techniques for aspect-level sentiment analysis focused on feature modeling using a variety of deep neural networks (DNN). Unfortunately, their performance may still fall short of expectation in real scenarios due to the semantic complexity of natural languages. Motivated by the observation that many linguistic hints (e.g., sentiment words and shift words) are reliable polarity indicators, we propose a joint framework, SenHint, which can seamlessly integrate the output of deep neural networks and the implications of linguistic hints in a unified model based on Markov logic network (MLN). SenHint leverages the linguistic hints for multiple purposes: (1) to identify the easy instances, whose polarities can be automatically determined by the machine with high accuracy; (2) to capture the influence of sentiment words on aspect polarities; (2) to capture the implicit relations between aspect polarities. We present the required techniques for extracting linguistic hints, encoding their implications as well as the output of DNN into the unified model, and joint inference. Finally, we have empirically evaluated the performance of SenHint on both English and Chinese benchmark datasets. Our extensive experiments have shown that compared to the state-of-the-art DNN techniques, SenHint can effectively improve polarity detection accuracy by considerable margins.
机译:用于方面级别情绪分析的最先进技术,专注于使用各种深神经网络(DNN)的特征建模。不幸的是,由于自然语言的语义复杂性,他们的表现仍可能在实际情况下缺乏预期。通过观察到许多语言提示(例如,情绪词语和转移词)是可靠的极性指示器,我们提出了一个联合框架,Senhint,它可以无缝地整合深度神经网络的输出和语言提示在统一模型中的影响基于马尔可夫逻辑网络(MLN)。 Senhint利用语言提示进行多种用途:(1)识别简单的实例,其极性可以高精度地通过机器自动确定; (2)捕捉对宽度极性的情感词的影响; (2)捕捉方面极性之间的隐式关系。我们介绍了提取语言提示所需的技术,编码其含义以及DNN的输出到统一模型中,以及关节推断。最后,我们经验证明了Senhint对英语和中国基准数据集的表现。我们广泛的实验表明,与最先进的DNN技术相比,Senhint可以通过相当大的边缘有效地提高极性检测精度。

著录项

  • 来源
  • 作者单位

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Key Lab Big Data Storage & Management Minist Ind & Informat Technol Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Key Lab Big Data Storage & Management Minist Ind & Informat Technol Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Key Lab Big Data Storage & Management Minist Ind & Informat Technol Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Key Lab Big Data Storage & Management Minist Ind & Informat Technol Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Key Lab Big Data Storage & Management Minist Ind & Informat Technol Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shaanxi Peoples R China|Northwestern Polytech Univ Key Lab Big Data Storage & Management Minist Ind & Informat Technol Xian 710072 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sentiment analysis; Linguistics; Neural networks; Task analysis; Markov processes; Cognition; Analytical models; Deep neural networks; linguistic hints; aspect-level sentiment analysis;

    机译:情绪分析;语言学;神经网络;任务分析;马尔可夫进程;认知;分析模型;深神经网络;语言暗示;方面的情绪分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号