首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Deep Interactive Memory Network for Aspect-Level Sentiment Analysis
【24h】

Deep Interactive Memory Network for Aspect-Level Sentiment Analysis

机译:深度交互式内存网络,用于方面级别情绪分析

获取原文
获取原文并翻译 | 示例

摘要

The goal of aspect-level sentiment analysis is to identify the sentiment polarity of a specific opinion target expressed; it is a fine-grained sentiment analysis task. Most of the existing works study how to better use the target information to model the sentence without using the interactive information between the sentence and target. In this article, we argue that the prediction of aspect-level sentiment polarity depends on both context and target. First, we propose a new model based on LSTM and the attention mechanism to predict the sentiment of each target in the review, the matrix-interactive attention network (M-IAN) that models target and context, respectively. M-IAN use an attention matrix to learn the interactive attention of context and target and generates the final representations of target and context. Then we introduce two gate networks based on M-IAN to build a deep interactive memory network to capture multiple interactions of target and context. The deep interactive memory network can excellently formulate specific memory for different targets, which is helpful in sentiment analysis. The experimental results of Restaurant and Laptop datasets of SemEval 2014 validate the effectiveness of our model.
机译:方面情绪分析的目标是识别表达的特定意见目标的情感极性;它是一个细粒度的情绪分析任务。大多数现有工程研究如何更好地使用目标信息来模拟句子而不使用句子和目标之间的交互信息。在本文中,我们认为,方面情绪极性的预测取决于上下文和目标。首先,我们提出了一种基于LSTM的新模型和注意机制,以预测审查中的每个目标的情绪,分别模拟目标和上下文的矩阵交互式注意网络(M-IAN)。 M-IAN使用注意矩阵来学习上下文和目标的交互式注意,并生成目标和上下文的最终表示。然后,我们介绍了基于M-IAN的两个门网络,建立一个深度交互式内存网络,捕获目标和上下文的多个交互。深度交互式内存网络可以极好地制定针对不同目标的特定内存,这有助于情绪分析。 Semeval 2014的餐馆和笔记本电脑数据集的实验结果验证了我们模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号