首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >HisRect: Features from Historical Visits and Recent Tweet for Co-Location Judgement
【24h】

HisRect: Features from Historical Visits and Recent Tweet for Co-Location Judgement

机译:HIRERECT:来自历史访问和最近的共同位置判断的推文的功能

获取原文
获取原文并翻译 | 示例

摘要

Enabled by smartphones, social media users are increasingly going mobile. This trend fosters various location based services on social media platforms (e.g., Twitter). Many services like friends notification and community detection benefit from co-location judgement, i.e., to decide whether two Twitter users are co-located in some point-of-interest (POI). This problem is challenging due to the limited information in tweets and the lack of explicit geo-tags in tweets that can be used as labeled data. Our approach to this problem is based on a novel concept of HisRect features extracted from users' historical visits and recent tweets: The former has impacts on where a user visits in general, whereas the latter gives more hints about where a user is currently. In practice, labeled data is scarce. Therefore, we design a semi-supervised learning (SSL) framework that leverages unlabeled data to extract HisRect features. Moreover, we employ an embedding neural network layer to process HisRect features of two users, which decides co-location based on the embedding difference between the two features. Our model is extensively evaluated on two large sets of real Twitter data from more than one million users. The experimental results demonstrate that our HisRect features and SSL framework are highly effective at deciding co-locations. In terms of multiple metrics, our approach clearly outperforms alternative approaches using state-of-the-art techniques.
机译:通过智能手机启用,社交媒体用户越来越多地移动。这一趋势促进了社交媒体平台上的各种位置的服务(例如,Twitter)。许多服务,如朋友通知和社区检测中受益于共同定位判断,即,决定两个推特用户是否在某些兴趣点(POI)中共同驻扎。由于推文中的信息有限,并且在推文中缺少可用作标记数据的推文中缺少显式地理标签,因此此问题挑战。我们对此问题的方法是基于从用户的历史访问和最近的推文中提取的重生功能的新颖概念:前者对用户访问的位置影响,而后者给出了用户当前的位置。在实践中,标记的数据是稀缺的。因此,我们设计了一个半监督的学习(SSL)框架,利用未标记的数据来提取HISRECT功能。此外,我们采用嵌入神经网络层来处理两个用户的HIRECT功能,这基于两个特征之间的嵌入差异来确定共同位置。我们的模型广泛地评估了来自超过一百万用户的两组实际推特数据。实验结果表明,我们的HISRECT功能和SSL框架在决定共同位置非常有效。就多项指标而言,我们的方法明显优于使用最先进的技术的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号