首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Group-Sparse SVD Models via L1 L1-and L0 L0-norm Penalties and their Applications in Biological Data
【24h】

Group-Sparse SVD Models via L1 L1-and L0 L0-norm Penalties and their Applications in Biological Data

机译:通过L1 L1和L0 L0-NOM-NOM-NOM-NOM-NOM-NOM-NOM罚款的组稀疏SVD模型及其在生物数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

Sparse Singular Value Decomposition (SVD) models have been proposed for biclustering high dimensional gene expression data to identify block patterns with similar expressions. However, these models do not take into account prior group effects upon variable selection. To this end, we first propose group-sparse SVD models with group Lasso (GL(1)-SVD) and group L-0-norm penalty (GL(0)-SVD) for non-overlapping group structure of variables. However, such group-sparse SVD models limit their applicability in some problems with overlapping structure. Thus, we also propose two group-sparse SVD models with overlapping group Lasso (OGL(1)-SVD) and overlapping group L-0-norm penalty (OGL(0)-SVD). We first adopt an alternating iterative strategy to solve GL(1)-SVD based on a block coordinate descent method, and GL(0)-SVD based on a projection method. The key of solving OGL(1)-SVD is a proximal operator with overlapping group Lasso penalty. We employ an alternating direction method of multipliers (ADMM) to solve the proximal operator. Similarly, we develop an approximate method to solve OGL(0)-SVD. Applications of these methods and comparison with competing ones using simulated data demonstrate their effectiveness. Extensive applications of them onto several real gene expression data with gene prior group knowledge identify some biologically interpretable gene modules.
机译:已经提出了稀疏的奇异值分解(SVD)模型用于双颗粒高尺寸基因表达数据,以识别具有类似表达的块模式。但是,这些模型在变量选择时不考虑先前的组效应。为此,我们首先提出了具有组套索(GL(1)-SVD)和GL(0)-SVD的GL(0)-SVD)的Group-Sparse SVD模型,用于非重叠组结构的变量。然而,这种稀疏SVD模型在重叠结构的一些问题中限制了它们的适用性。因此,我们还提出了两个具有重叠组套索(OGL(1)-SVD)和重叠组L-0-NORM惩罚(OGL(0)-SVD)的两组稀疏SVD模型。我们首先采用交替的迭代策略来解决基于块坐标缩进方法的GL(1)-SVD,以及基于投影方法的GL(0)-SVD。解决OGL(1)-SVD的键是一个近端运算符,具有重叠组套索罚球。我们采用了乘法器(ADMM)的交替方向方法来解决近端操作员。同样,我们开发了求解OGL(0)-SVD的近似方法。使用模拟数据的使用这些方法和与竞争者的应用展示了它们的有效性。它们对几种具有基因的真实基因表达数据的广泛应用鉴定了一些生物学可解释的基因模块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号