首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Skia: Scalable and Efficient In-Memory Analytics for Big Spatial-Textual Data
【24h】

Skia: Scalable and Efficient In-Memory Analytics for Big Spatial-Textual Data

机译:SKIA:用于大空间文本数据的可扩展和高效的内存分析

获取原文
获取原文并翻译 | 示例

摘要

In recent years, spatial-keyword queries have attracted much attention with the fast development of location-based services. However, current spatial-keyword techniques are disk-based, which cannot fulfill the requirements of high throughput and low response time. With the surging data size, people tend to process data in distributed in-memory environments to achieve low latency. In this paper, we present the distributed solution, i.e., Skia (Spatial-Keyword In-memory Analytics), to provide a scalable backend for spatial-textual analytics. Skia introduces a two-level index framework for big spatial-textual data including: (1) efficient and scalable global index, which prunes the candidate partitions a lot while achieving small space budget; and (2) four novel local indexes, that further support low latency services for exact and approximate spatial-keyword queries. Skia can support common spatial-keyword queries via traditional SQL programming interfaces. The experiments conducted on large-scale real datasets have demonstrated the promising performance of the proposed indexes and our distributed solution.
机译:近年来,空间关键字查询吸引了基于位置的服务的快速发展,引起了很多关注。但是,当前的空间关键字技术是基于磁盘的,其无法满足高吞吐量和低响应时间的要求。利用汹涌的数据大小,人们倾向于在分布式内存环境中处理数据以实现低延迟。在本文中,我们介绍了分布式解决方案,即Skia(Spatial-Key-内存分析),以提供空间文本分析的可伸缩后端。 Skia为大型空间文本数据引入了两级索引框架,包括:(1)高效且可扩展的全局指数,该指数在实现小空间预算的同时修剪候选分区; (2)四个新颖的​​本地索引,进一步支持低延迟服务,以确切和近似的空间关键字查询。 Skia可以通过传统的SQL编程接口支持常见的Spatial-关键字查询。在大型实时数据集上进行的实验已经证明了所提出的指数和分布式解决方案的有希望的性能。

著录项

  • 来源
    《IEEE Transactions on Knowledge and Data Engineering》 |2020年第12期|2467-2480|共14页
  • 作者单位

    Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangdong Key Lab Big Data Anal & Proc Guangzhou 510245 Guangdong Peoples R China;

    Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China;

    Alibaba Cloud Spatio Temporal Cloud Comp Team Beijing Peoples R China;

    Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Distributed systems; indexing; spatial-textual analysis;

    机译:分布式系统;索引;空间文本分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号