首页> 外文期刊>Journal of Parallel and Distributed Computing >FluteDB: An efficient and scalable in-memory time series database for sensor-cloud
【24h】

FluteDB: An efficient and scalable in-memory time series database for sensor-cloud

机译:FluteDB:用于传感器云的高效且可扩展的内存中时间序列数据库

获取原文
获取原文并翻译 | 示例

摘要

Recently, with the widespread use of large-scale sensor network, time series data is vastly generated and requires to be processed. However, those traditional databases show their limitations on storage when handling such a large stream data in cloud, and even their actual reliability and availability are also difficult to be guaranteed. To deal with the problem, this paper proposes FluteDB, an efficient and scalable in memory time series database for sensor-cloud. We adequately analyze the unique characteristics of time series data and its relevant operations to strike the right balance among efficiency, scalability, resources consumption, reliability and availability. Specifically, on basis of the aggregate analysis of root cause for ongoing time series problems, FluteDB targeted optimizes the strategies for key operations in memory and physical storage, at the expense of partial acceptable data precision and consistency. FluteDB's enhanced strategies are primarily comprised of Triggered Time Series Merge Tree (TTSM Tree), time series enhanced cache management and corresponding compression algorithms for different data types. The validations of all sub-modules have demonstrated that our improved strategies outperform existing methods in real time series environment significantly. Global experimental results also show that the integrated FluteDB reduces query latency by 17x, improves write rate by 98x and saves about 47% storage resources. The average available service time and recovery rate and degree of FluteDB are competitive with the state-of-the-art reliability and availability strategy in real and simulated faults, which demonstrates FluteDB can provide highly stable large-scale data cloud services. (C) 2018 Elsevier Inc. All rights reserved.
机译:近来,随着大规模传感器网络的广泛使用,时间序列数据被大量生成并且需要被处理。但是,这些传统数据库在处理云中如此大的流数据时显示出它们在存储上的局限性,甚至它们的实际可靠性和可用性也很难得到保证。为了解决这个问题,本文提出了FluteDB,这是一种高效且可扩展的传感器云存储时间序列数据库。我们充分分析时间序列数据及其相关操作的独特特征,以在效率,可伸缩性,资源消耗,可靠性和可用性之间取得适当的平衡。具体来说,基于对持续出现的时间序列问题的根本原因进行的综合分析,FluteDB目标可优化内存和物理存储中关键操作的策略,但要牺牲部分可接受的数据精度和一致性。 FluteDB的增强策略主要包括触发时间序列合并树(TTSM Tree),时间序列增强的缓存管理以及针对不同数据类型的相应压缩算法。所有子模块的验证表明,我们的改进策略在实时序列环境中的性能明显优于现有方法。全局实验结果还表明,集成的FluteDB将查询延迟减少了17倍,将写入速率提高了98倍,并节省了约47%的存储资源。在实际和模拟故障中,FluteDB的平均可用服务时间,恢复率和程度与最新的可靠性和可用性策略相比,这表明FluteDB可以提供高度稳定的大规模数据云服务。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号