首页> 外文期刊>ACM transactions on autonomous and adaptive systems >Transactional Auto Scaler: Elastic Scaling of Replicated In-Memory Transactional Data Grids
【24h】

Transactional Auto Scaler: Elastic Scaling of Replicated In-Memory Transactional Data Grids

机译:事务性自动定标器:复制的内存中事务性数据网格的弹性扩展

获取原文
获取原文并翻译 | 示例

摘要

In this article, we introduce TAS (Transactional Auto Scaler), a system for automating the elastic scaling of replicated in-memory transactional data grids, such as NoSQL data stores or Distributed Transactional Memories. Applications of TAS range from online self-optimization of in-production applications to the automatic generation of QoS/cost-driven elastic scaling policies, as well as to support for what-if analysis on the scalability of transactional applications. In this article, we present the key innovation at the core of TAS, namely, a novel performance forecasting methodology that relies on the joint usage of analytical modeling and machine learning. By exploiting these two classically competing approaches in a synergic fashion, TAS achieves the best of the two worlds, namely, high extrapolation power and good accuracy, even when faced with complex workloads deployed over public cloud infrastructures. We demonstrate the accuracy and feasibility of TAS's performance forecasting methodology via an extensive experimental study based on a fully fledged prototype implementation integrated with a popular open-source in-memory transactional data grid (Red Hat's Infinispan) and industry-standard benchmarks generating a breadth of heterogeneous workloads.
机译:在本文中,我们介绍了TAS(事务自动缩放器),这是一个用于自动复制已复制的内存中事务数据网格(例如NoSQL数据存储或分布式事务存储)的弹性缩放的系统。 TAS的应用范围从生产应用程序的在线自我优化到QoS /成本驱动的弹性伸缩策略的自动生成,以及支持对事务应用程序的可伸缩性进行假设分析。在本文中,我们介绍了TAS核心的关键创新,即一种新颖的性能预测方法,该方法依赖于分析建模和机器学习的联合使用。通过以协同方式利用这两种经典竞争的方法,即使面临着在公共云基础架构上部署的复杂工作负载,TAS仍可实现两个世界的最佳选择,即高外推能力和良好的准确性。我们通过基于成熟原型实现,流行的开源内存内事务数据网格(Red Hat的Infinispan)和行业标准基准的广泛实验研究,证明了TAS性能预测方法的准确性和可行性。异构工作负载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号