首页> 外文期刊>Computer standards & interfaces >Data mining-based hierarchical transaction model for multi-level consistency management in large-scale replicated databases
【24h】

Data mining-based hierarchical transaction model for multi-level consistency management in large-scale replicated databases

机译:基于数据挖掘的分层事务模型,用于大规模复制数据库中的多级一致性管理

获取原文
获取原文并翻译 | 示例

摘要

Scalability and availability in a large-scale distributed database is determined by the consistency strategies used by the transactions. Most of the big data applications demand consistency and availability at the same time. However, a suitable transaction model that handles the trade-obetween availability and consistency is presently lacking. In this article, we have proposed a hierarchical transaction model that supports multiple consistency levels for data items in a large-scale replicated database. The data items have been classified into different categories based on their consistency requirement, computed using a data mining algorithm. Thereafter, these have been mapped to the appropriate consistency level in the hierarchy. This allows parallel execution of several transactions belonging to each level. The topmost level called the Serializable (SR) level follows strong consistency applicable to data items that are mostly read and updated both. The next level of consistency, Snapshot Isolation (SI), maps to data items which are mostly read and demand unblocking read. Data items which are mostly updated do not follow strict consistent snapshot and have been mapped to the next lower level called Non- monotonic Snapshot Isolation (NMSI). The lowest level in the hierarchy correspond to data items for which ordering of operations does not matter. This level is called the Asynchronous (ASYNC) level. We have tested the proposed transaction model with two different workloads on a test-bed designed following the TPC-C benchmark schema. The performance of the proposed model has been evaluated against other transaction models that support single consistency policy. The proposed model has shown promising results in terms of transaction throughput, commit rate and average latency.
机译:大规模分布式数据库中的可伸缩性和可用性由事务使用的一致性策略决定。大多数大数据应用程序同时需要一致性和可用性。但是,目前缺乏处理交易的合适的交易模型和处理交易的可用性和一致性。在本文中,我们提出了一个分层交易模型,用于支持大规模复制数据库中的数据项的多个一致性级别。数据项基于使用数据挖掘算法计算的一致性要求,分为不同类别。此后,这些已被映射到层次结构中的适当一致性水平。这允许并行执行属于每个级别的多个事务。称为Serializable(SR)级别的最顶层遵循适用于大多数读取和更新的数据项的强趋势。下一级一致性,快照隔离(SI),映射到大多数读取和需求读取的数据项。大多数更新的数据项不会遵循严格的一致快照,并且已被映射到名为“非单调快照隔离(NMSI)的下一个较低级别”。层次结构中的最低级别对应于操作排序无关紧要的数据项。此级别称为异步(异步)级别。我们已经在TPC-C基准架构之后的测试床上测试了具有两个不同工作负载的建议的交易模型。已经针对支持单一一致性策略的其他交易模型进行了评估了所提出的模型的性能。所提出的模型在交易吞吐量,提交率和平均延迟方面显示了有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号