首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Locally Balanced Inductive Matrix Completion for Demand-Supply Inference in Stationless Bike-Sharing Systems
【24h】

Locally Balanced Inductive Matrix Completion for Demand-Supply Inference in Stationless Bike-Sharing Systems

机译:局部平衡的电感矩阵完成在无电路自行车共享系统中的需求推断

获取原文
获取原文并翻译 | 示例

摘要

Stationless bike-sharing systems such as Mobike are currently becoming extremely popular in China as well as some other big cities in the world. Compared to traditional bicycle-sharing systems, stationless bike-sharing systems do not need bike stations. Users can rent and return bikes at arbitrary locations through an App installed on their smart phones. Such a convenient and flexible bike-sharing mode greatly solves the last mile issue of the commuters, and better meets their real bike usage demand. However, it also poses new challenges for operators to manage the system. The first primary challenge is how to accurately estimate the real bike usage demand in different areas of a city and in different time intervals, which is crucial for the system planning and operation. This paper for the first time proposes a data driven approach for bike usage demand inference in stationless bike-sharing systems. The idea is that we first estimate the demands in some regions and time intervals from a small number of observed bike check-out/in data directly, and then use them as seeds to infer the region-level bike usage demands of an entire city. Specifically, we formulate this problem as a matrix completion task by modeling the bike usage demand as a matrix whose two dimensions are time intervals of a day and regions of a city, respectively. With the observation that POI distribution of a region is an important indicator to bike demand, we propose to utilize inductive matrix factorization by considering POIs as side information. As the bike usage data are highly correlated in both spatial and temporal dimensions, we also incorporate the spatial-temporal correlations as well as the balanced bike usage constraint into a joint optimization framework. We evaluate the proposed model on a large Mobike trip dataset collected from Beijing, and the experimental results show its superior performance by comparison with various baseline methods.
机译:无电机的自行车共享系统,如移动式的自行车分享系统目前在中国非常受欢迎,以及世界其他一些大城市。与传统的自行车共享系统相比,无电动自行车共享系统不需要自行车站。用户可以通过安装在智能手机上安装的应用程序在任意位置租用并返回自行车。这种方便且灵活的自行车共享模式极大地解决了上一英里的通勤问题,更好地满足了他们的真实自行车使用需求。但是,它对管理系统的运营商也会构成新的挑战。第一个主要挑战是如何准确地估计城市不同地区和不同时间间隔的真实自行车使用需求,这对于系统规划和操作至关重要。本文首次提出了一种数据驱动方法,用于在无电动自行车共享系统中的自行车使用量推断推断。我们的想法是,我们首先估计一些地区的需求和直接从少量观察到的自行车退房/数据中的时间间隔,然后使用它们作为种子来推断整个城市的区域级自行车使用情况。具体而言,我们将该问题作为矩阵完成任务,通过将自行车使用需求建模为矩阵,其两个维度分别是城市的一天和地区的时间间隔。随着观察到一个区域的POI分布是自行车需求的重要指标,我们建议通过将POI视为侧面信息来利用归纳矩阵分解。由于自行车使用数据在空间和时间尺寸方面高度相关,因此我们还包含了空间 - 时间相关性以及平衡的自行车使用约束成为联合优化框架。我们评估了从北京收集的大型流动旅行数据集的拟议模型,实验结果通过与各种基线方法进行比较,表现出优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号