首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Scalable Multi-Data Sources Based Recursive Approximation Approach for Fast Error Recovery in Big Sensing Data on Cloud
【24h】

A Scalable Multi-Data Sources Based Recursive Approximation Approach for Fast Error Recovery in Big Sensing Data on Cloud

机译:基于可伸缩的多数据源的递增近似方法,用于云大传感数据中的快速恢复

获取原文
获取原文并翻译 | 示例

摘要

Big sensing data is commonly encountered from various surveillance or sensing systems. Sampling and transferring errors are commonly encountered during each stage of sensing data processing. How to recover from these errors with accuracy and efficiency is quite challenging because of high sensing data volume and unrepeatable wireless communication environment. While Cloud provides a promising platform for processing big sensing data, however scalable and accurate error recovery solutions are still need. In this paper, we propose a novel approach to achieve fast error recovery in a scalable manner on cloud. This approach is based on the prediction of a recovery replacement data by making multiple data sources based approximation. The approximation process will use coverage information carried by data units to limit the algorithm in a small cluster of sensing data instead of a whole data spectrum. Specifically, in each sensing data cluster, a Euclidean distance based approximation is proposed to calculate a time series prediction. With the calculated time series, a detected error can be recovered with a predicted data value. Through the experiment with real world meteorological data sets on cloud, we demonstrate that the proposed error recovery approach can achieve high accuracy in data approximation to replace the original data error. At the same time, with MapReduce based implementation for scalability, the experimental results also show significant efficiency on time saving.
机译:来自各种监视或传感系统通常遇到大传感数据。在感测数据处理的每个阶段,通常遇到采样和传输错误。如何以准确性和效率从这些误差恢复是非常具有挑战性的,因为具有高的传感数据量和未重复的无线通信环境。虽然云为处理大感测数据提供了有希望的平台,但是可扩展和准确的错误恢复解决方案仍然需要。在本文中,我们提出了一种新的方法,以在云上以可扩展的方式实现快速错误恢复。该方法基于基于多个数据源的近似来基于恢复替换数据的预测。近似过程将使用数据单元携带的覆盖信息来限制在感测数据的小群集中而不是整个数据频谱的算法。具体地,在每个感测数据集群中,提出了基于欧几里德距离的近似来计算时间序列预测。与计算出的时间序列中,检测到的错误可以与预测的数据值被恢复。通过对云上的真实世界气象数据集的实验,我们证明所提出的错误恢复方法可以在数据近似下实现高精度以替换原始数据错误。同时,通过基于MapReduce的实现可扩展性,实验结果还显示了显着的节省效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号