首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >CLARANS: a method for clustering objects for spatial data mining
【24h】

CLARANS: a method for clustering objects for spatial data mining

机译:CLARANS:一种用于空间数据挖掘的对象聚类方法

获取原文
获取原文并翻译 | 示例

摘要

Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. To this end, this paper has three main contributions. First, it proposes a new clustering method called CLARANS, whose aim is to identify spatial structures that may be present in the data. Experimental results indicate that, when compared with existing clustering methods, CLARANS is very efficient and effective. Second, the paper investigates how CLARANS can handle not only point objects, but also polygon objects efficiently. One of the methods considered, called the IR-approximation, is very efficient in clustering convex and nonconvex polygon objects. Third, building on top of CLARANS, the paper develops two spatial data mining algorithms that aim to discover relationships between spatial and nonspatial attributes. Both algorithms can discover knowledge that is difficult to find with existing spatial data mining algorithms.
机译:空间数据挖掘是发现可能隐含在空间数据库中的有趣的关系和特征。为此,本文有三个主要贡献。首先,它提出了一种称为CLARANS的新聚类方法,其目的是识别数据中可能存在的空间结构。实验结果表明,与现有的聚类方法相比,CLARANS非常有效。其次,本文研究了CLARANS如何不仅可以有效地处理点对象,而且还可以有效地处理多边形对象。所考虑的一种方法称为IR逼近,在聚类凸和非凸多边形对象时非常有效。第三,本文基于CLARANS,开发了两种空间数据挖掘算法,旨在发现空间属性与非空间属性之间的关系。两种算法都可以发现现有空间数据挖掘算法很难找到的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号