首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Modeling Image Data for Effective Indexing and Retrieval in Large General Image Databases
【24h】

Modeling Image Data for Effective Indexing and Retrieval in Large General Image Databases

机译:为大型通用图像数据库中的有效索引和检索建模图像数据

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an image semantic model based on the knowledge and criteria in the field of linguistics and taxonomy. Our work bridges the "semantic gap" by seamlessly exploiting the synergy of both visual feature processing and semantic relevance computation in a new way, and provides improved query efficiency and effectiveness for large general image databases. Our main contributions are as follows: We design novel data structures, namely a Lexical Hierarchy, an Image-Semantic Hierarchy, and a number of Atomic Semantic Domains, to capture the semantics and the features of the database, and to provide the indexing scheme. We present a novel image query algorithm based on the proposed structures. In addition, we propose a novel term expansion mechanism to improve the lexical processing. Our extensive experiments indicate that our proposed techniques are effective in achieving high run-time performance with improved retrieval accuracy. The experiments also show that the proposed method has good scalability.
机译:本文提出了一种基于语言学和分类学领域知识和准则的图像语义模型。我们的工作通过以一种新的方式无缝地利用视觉特征处理和语义相关性计算的协同作用来弥合“语义鸿沟”,并为大型通用图像数据库提供了改进的查询效率和有效性。我们的主要贡献如下:我们设计了新颖的数据结构,即词汇层次结构,图像语义层次结构和许多原子语义域,以捕获数据库的语义和特征,并提供索引方案。我们提出了一种基于提出的结构的新型图像查询算法。此外,我们提出了一种新颖的术语扩展机制来改善词汇处理。我们广泛的实验表明,我们提出的技术可以有效地实现高运行时性能,并提高检索精度。实验还表明,该方法具有良好的可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号