首页> 外文期刊>IEEE Transactions on Image Processing >Effective Image Retrieval Based on Hidden Concept Discovery in Image Database
【24h】

Effective Image Retrieval Based on Hidden Concept Discovery in Image Database

机译:基于图像数据库中隐藏概念发现的有效图像检索

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses content-based image retrieval in general, and in particular, focuses on developing a hidden semantic concept discovery methodology to address effective semantics-intensive image retrieval. In our approach, each image in the database is segmented into regions associated with homogenous color, texture, and shape features. By exploiting regional statistical information in each image and employing a vector quantization method, a uniform and sparse region-based representation is achieved. With this representation, a probabilistic model based on statistical-hidden-class assumptions of the image database is obtained, to which the expectation-maximization technique is applied to analyze semantic concepts hidden in the database. An elaborated retrieval algorithm is designed to support the probabilistic model. The semantic similarity is measured through integrating the posterior probabilities of the transformed query image, as well as a constructed negative example, to the discovered semantic concepts. The proposed approach has a solid statistical foundation; the experimental evaluations on a database of 10 000 general-purposed images demonstrate its promise and effectiveness
机译:本文总体上解决了基于内容的图像检索问题,特别是着重于开发一种隐藏的语义概念发现方法,以解决有效的语义密集型图像检索问题。在我们的方法中,数据库中的每个图像都被划分为与同质颜色,纹理和形状特征相关的区域。通过利用每个图像中的区域统计信息并采用矢量量化方法,可以实现基于区域的均匀稀疏表示。通过这种表示,获得了基于图像数据库的统计隐藏类假设的概率模型,并对其应用了期望最大化技术来分析隐藏在数据库中的语义概念。设计了详细的检索算法来支持概率模型。语义相似度是通过将转换后的查询图像的后验概率以及所构造的否定示例与发现的语义概念相集成来衡量的。所提出的方法具有坚实的统计基础;对10,000张通用图像数据库的实验评估证明了其前景和有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号