首页> 外文期刊>Journal of computer sciences >A Semantic Image Retrieval Technique Through Concept Co-occurrence Based Database Organization and DeepLab Segmentation
【24h】

A Semantic Image Retrieval Technique Through Concept Co-occurrence Based Database Organization and DeepLab Segmentation

机译:通过基于概念的数据库组织和DEEPLAB分段进行语义图像检索技术

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a semantic image retrieval technique that efficiently depicts users' perspective is proposed. It primarily aims in the representation of contextual diversity of the user through a high level semantic segmentation technique called DeepLab-V3+. An online user interactive step is also included during the retrieval process. The significance of intra-concept variation in image retrieval is clearly presented in this paper. An efficient database organization, which forms the essence of the retrieval methodology, based on concept co-occurrence and inter-concept distance is also proposed. ResNet-101 CNN features extracted from the regions are utilized in classification and retrieval tasks. The simulation results and performance analysis conducted on PASCAL VOC2012 and SUN '09 datasets depict the superiority of the proposed technique over other approaches.
机译:本文提出了一种有效地描绘用户透视的语义图像检索技术。它主要旨在通过称为DEEPLAB-V3 +的高级语义分段技术表示用户的上下文分集。在检索过程中还包括在线用户交互步骤。本文清楚地介绍了概念检索内变化的重要性。还提出了一种基于概念共同发生和概念间距离的检索方法的本质的高效数据库组织。 Reset-101从区域中提取的CNN特征在分类和检索任务中使用。 Pascal VOC2012和Sun '09数据集进行的仿真结果和性能分析描述了所提出的技术在其他方法上的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号