首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Efficient Similarity Search over Future Stream Time Series
【24h】

Efficient Similarity Search over Future Stream Time Series

机译:未来流时间序列上的有效相似性搜索

获取原文
获取原文并翻译 | 示例

摘要

With the advance of hardware and communication technologies, stream time series is gaining ever-increasing attention due to its importance in many applications, such as financial data processing, network monitoring, web click-stream analysis, sensor data mining and anomaly detection. For all these applications, an efficient and effective similarity search over stream data is essential. Even though many approaches have been proposed for searching through archived data, because of the unique characteristics of the stream, for example, data are frequently updated and real-time response is required, traditional methods may not work in these stream scenarios. Especially, for the cases where the arrival of data is often delayed for various reasons, for example, the communication congestion or batch processing and so on, queries on such incomplete time series or even future time series may result in inaccuracy using the traditional approaches. Therefore, in this paper we propose three approaches, polynomial, DFT and probabilistic, to predict the unknown values that have not arrived at the system and answer the queries based on the predicated data. We also present efficient indexes, that is, a multidimensional hash index and B+-tree, to facilitate the prediction and similarity search on future time series, respectively. Extensive experiments demonstrate the efficiency and effectiveness of our methods in terms of I/O, prediction and query accuracy
机译:随着硬件和通信技术的进步,流时间序列在金融数据处理,网络监控,Web点击流分析,传感器数据挖掘和异常检测等许多应用中的重要性日益受到关注。对于所有这些应用程序,对流数据进行高效有效的相似性搜索至关重要。即使已经提出了许多方法来搜索已归档的数据,但是由于流的独特特性(例如,数据经常被更新并且需要实时响应),传统方法可能无法在这些流方案中工作。尤其是,对于由于各种原因(例如,通信拥塞或批处理等)而经常导致数据到达延迟的情况,使用传统方法对此类不完整的时间序列甚至未来的时间序列进行查询可能会导致不准确。因此,在本文中,我们提出了多项式,DFT和概率三种方法,以预测尚未到达系统的未知值并根据预测数据回答查询。我们还提出了有效的索引,即多维哈希索引和B +树,以分别促进对未来时间序列的预测和相似性搜索。大量实验证明了我们的方法在I / O,预测和查询准确性方面的效率和有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号