首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Feature-Based Online Representation Algorithm for Streaming Time Series Similarity Search
【24h】

Feature-Based Online Representation Algorithm for Streaming Time Series Similarity Search

机译:基于特征的在线表示算法,用于流时间序列相似性搜索

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of information technology, we have already access to the era of big data. Time series is a sequence of data points associated with numerical values and successive timestamps. Time series not only has the traditional big data features, but also can be continuously generated in a high speed. Therefore, it is very time- and resource-consuming to directly apply the traditional time series similarity search methods on the raw time series data. In this paper, we propose a novel online segmenting algorithm for streaming time series, which has a relatively high performance on feature representation and similarity search. Extensive experimental results on different typical time series datasets have demonstrated the superiority of our method.
机译:随着信息技术的快速发展,我们已经访问了大数据的时代。时间序列是与数值和连续时间戳相关联的一系列数据点。时间序列不仅具有传统的大数据特征,还可以高速产生。因此,在原始时间序列数据上直接应用传统的时间序列相似性搜索方法非常有时间和资源。在本文中,我们提出了一种用于流时间序列的新型在线分段算法,其在特征表示和相似度搜索上具有相对高的性能。不同典型时间序列数据集的广泛实验结果表明了我们方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号