首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Mining Bucket Order-Preserving SubMatrices in Gene Expression Data
【24h】

Mining Bucket Order-Preserving SubMatrices in Gene Expression Data

机译:基因表达数据中挖掘存储桶顺序的子矩阵

获取原文
获取原文并翻译 | 示例

摘要

The Order-Preserving SubMatrices (OPSMs) are employed to discover significant biological associations between genes and experiment conditions. Herein, we propose a new relaxed OPSM model by considering the linearity relaxation, which is called the Bucket OPSM (BOPSM) model. An efficient method called ApriBopsm is developed to exhaustively mine such BOPSM patterns. We further generalize the BOPSM model by incorporating the similarity relaxation strategy. We develop a generalized BOPSM model called GeBOPSM and adopt a pattern growing method called SeedGrowth to mine GeBOPSM patterns. Informally, the SeedGrowth algorithm adopts two different growing strategies on rows and columns in order to expand a seed BOPSM into a maximal GeBOPSM pattern. We conduct a series of experiments using both synthetic and biological datasets to study the effectiveness of our proposed relaxed models and the efficiency of the relevant mining methods. The BOPSM model is shown to be able to capture the characteristics of noisy OPSM patterns, and is superior to the strict counterparts. ApriBopsm is also significantly more efficient than OPC-Tree, which is the state-of-the-art OPSM mining method. Compared to all the current relaxed OPSM models, the GeBOPSM model achieves the best performance in terms of the number of mined quality patterns.
机译:保序子矩阵(OPSM)用于发现基因与实验条件之间的重要生物学关联。在此,我们通过考虑线性松弛来提出一种新的松弛OPSM模型,称为桶OPSM(BOPSM)模型。开发了一种称为ApriBopsm的有效方法来详尽地挖掘此类BOPSM模式。我们通过合并相似度松弛策略进一步推广BOPSM模型。我们开发了一种称为GeBOPSM的广义BOPSM模型,并采用了称为SeedGrowth的模式生长方法来挖掘GeBOPSM模式。非正式地,SeedGrowth算法在行和列上采用两种不同的生长策略,以将种子BOPSM扩展为最大的GeBOPSM模式。我们使用合成数据集和生物学数据集进行了一系列实验,以研究我们提出的宽松模型的有效性以及相关采矿方法的效率。证明BOPSM模型能够捕获嘈杂的OPSM模式特征,并且优于严格的模式。 ApriBopsm还比OPC-Tree(最先进的OPSM挖掘方法)有效得多。与所有当前的宽松OPSM模型相比,GeBOPSM模型在挖掘的质量模式数量方面达到了最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号