首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Mining Order-Preserving Submatrices from Data with Repeated Measurements
【24h】

Mining Order-Preserving Submatrices from Data with Repeated Measurements

机译:从具有重复测量的数据中挖掘保留订单的子矩阵

获取原文
获取原文并翻译 | 示例

摘要

Order-preserving submatrices (OPSM's) have been shown useful in capturing concurrent patterns in data when the relative magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained from microarray experiments, the relative magnitudes are important both because they represent the change of gene activities across the experiments, and because there is typically a high level of noise in data that makes the exact values untrustable. To cope with data noise, repeated experiments are often conducted to collect multiple measurements. We propose and study a more robust version of OPSM, where each data item is represented by a set of values obtained from replicated experiments. We call the new problem OPSM-RM (OPSM with repeated measurements). We define OPSM-RM based on a number of practical requirements. We discuss the computational challenges of OPSM-RM and propose a generic mining algorithm. We further propose a series of techniques to speed up two time dominating components of the algorithm. We show the effectiveness and efficiency of our methods through a series of experiments conducted on real microarray data.
机译:当数据项的相对大小比它们的精确值更重要时,保留顺序子矩阵(OPSM)已显示对捕获数据中的并发模式很有用。例如,在分析从微阵列实验获得的基因表达谱时,相对幅度很重要,因为它们代表了整个实验中基因活动的变化,并且因为数据中通常存在高水平的噪声,使得准确值不可信。为了应对数据噪声,经常进行重复实验以收集多个测量值。我们提出并研究了OPSM的更强大版本,其中每个数据项都由从重复实验中获得的一组值表示。我们称新问题为OPSM-RM(重复测量的OPSM)。我们根据许多实际要求定义OPSM-RM。我们讨论了OPSM-RM的计算难题,并提出了一种通用的挖掘算法。我们进一步提出了一系列技术来加速算法的两个时间支配组件。我们通过对实际微阵列数据进行的一系列实验来证明我们方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号