首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Nonadaptive Mastermind Algorithms for String and Vector Databases, with Case Studies
【24h】

Nonadaptive Mastermind Algorithms for String and Vector Databases, with Case Studies

机译:字符串和向量数据库的非自适应策划算法,带有案例研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study sparsity-exploiting Mastermind algorithms for attacking the privacy of an entire database of character strings or vectors, such as DNA strings, movie ratings, or social network friendship data. Based on reductions to nonadaptive group testing, our methods are able to take advantage of minimal amounts of privacy leakage, such as contained in a single bit that indicates if two people in a medical database have any common genetic mutations, or if two people have any common friends in an online social network. We analyze our Mastermind attack algorithms using theoretical characterizations that provide sublinear bounds on the number of queries needed to clone the database, as well as experimental tests on genomic information, collaborative filtering data, and online social networks. By taking advantage of the generally sparse nature of these real-world databases and modulating a parameter that controls query sparsity, we demonstrate that relatively few nonadaptive queries are needed to recover a large majority of each database.
机译:在本文中,我们研究了利用稀疏性的Mastermind算法来攻击整个字符串或向量数据库的隐私,例如DNA字符串,电影分级或社交网络友谊数据。基于非自适应组测试的减少,我们的方法能够利用最小程度的隐私泄露,例如包含在一个比特中,该比特指示医疗数据库中的两个人是否具有任何共同的基因突变,或者两个人是否具有任何基因突变。在线社交网络中的普通朋友。我们使用理论特征分析Mastermind攻击算法,这些特征为克隆数据库所需的查询数量提供了亚线性范围,并提供了对基因组信息,协作过滤数据和在线社交网络的实验性测试。通过利用这些实际数据库的一般稀疏性质并调节控制查询稀疏性的参数,我们证明了恢复每个数据库的大部分所需的非自适应查询相对较少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号