首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme
【24h】

Approximate Shortest Distance Computing: A Query-Dependent Local Landmark Scheme

机译:近似最短距离计算:一种依赖于查询的局部地标方案

获取原文
获取原文并翻译 | 示例

摘要

Shortest distance query is a fundamental operation in large-scale networks. Many existing methods in the literature take a landmark embedding approach, which selects a set of graph nodes as landmarks and computes the shortest distances from each landmark to all nodes as an embedding. To answer a shortest distance query, the precomputed distances from the landmarks to the two query nodes are used to compute an approximate shortest distance based on the triangle inequality. In this paper, we analyze the factors that affect the accuracy of distance estimation in landmark embedding. In particular, we find that a globally selected, query-independent landmark set may introduce a large relative error, especially for nearby query nodes. To address this issue, we propose a query-dependent local landmark scheme, which identifies a local landmark close to both query nodes and provides more accurate distance estimation than the traditional global landmark approach. We propose efficient local landmark indexing and retrieval techniques, which achieve low offline indexing complexity and online query complexity. Two optimization techniques on graph compression and graph online search are also proposed, with the goal of further reducing index size and improving query accuracy. Furthermore, the challenge of immense graphs whose index may not fit in the memory leads us to store the embedding in relational database, so that a query of the local landmark scheme can be expressed with relational operators. Effective indexing and query optimization mechanisms are designed in this context. Our experimental results on large-scale social networks and road networks demonstrate that the local landmark scheme reduces the shortest distance estimation error significantly when compared with global landmark embedding and the state-of-the-art sketch-based embedding.
机译:最短距离查询是大规模网络中的基本操作。文献中许多现有方法采用地标嵌入方法,该方法选择一组图节点作为地标,并计算从每个地标到所有节点的最短距离作为嵌入。为了回答最短距离查询,将从地标到两个查询节点的预先计算的距离用于基于三角形不等式计算近似最短距离。在本文中,我们分析了影响地标嵌入中距离估计精度的因素。特别是,我们发现全局选择的,独立于查询的地标集可能会引入较大的相对误差,尤其是对于附近的查询节点。为了解决这个问题,我们提出了一种依赖于查询的局部地标方案,该方案标识了两个查询节点附近的局部地标,并且比传统的全局地标方法提供了更准确的距离估计。我们提出了有效的本地地标索引和检索技术,可以实现较低的离线索引复杂度和在线查询复杂度。还提出了两种针对图压缩和图在线搜索的优化技术,以进一步减小索引大小并提高查询精度。此外,索引可能无法容纳在内存中的庞大图的挑战导致我们将嵌入存储在关系数据库中,从而可以用关系运算符表达对局部界标方案的查询。在这种情况下,将设计有效的索引和查询优化机制。我们在大型社交网络和道路网络上的实验结果表明,与全局地标嵌入和最新的基于草图的嵌入相比,本地地标方案显着减少了最短距离估计误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号