首页> 外文期刊>Engineering Computations >Shortest distance estimation in large scale graphs: A landmark selection strategy based on multi-objective PSO
【24h】

Shortest distance estimation in large scale graphs: A landmark selection strategy based on multi-objective PSO

机译:大型图中最短距离的估计:基于多目标PSO的地标选择策略

获取原文
获取原文并翻译 | 示例

摘要

Purpose - Shortest distance query between a pair of nodes in a graph is a classical problem with a wide variety of applications. Exact methods for this problem are infeasible for large-scale graphs such as social networks with hundreds of millions of users and links due to their high complexity of time and space. The purpose of this paper is to propose a novel landmark selection strategy which can estimate the shortest distances in large-scale graphs and clarify the efficiency and accuracy of the proposed strategy in comparison with currently used strategies. Design/methodology/approach - Different from existing strategies, the landmark selection problem is regarded as a binary combinational optimization problem consisting of two optimization objectives and one constraint. Further, the original binary combinational optimization problem with constraints is transformed to a proper form of optimization objectives without any additional constraints and the equivalence of solutions is proved. Finally the solution of the optimization problem is performed with a modified multi-objective particle swarm optimization (MOPSO) integrating the mutation operator and crossover operator of genetic algorithm. Findings - Four real networks of large scale are used as data sets to carry out the experiments and the experiment results show that the proposed strategy improves both of the accuracy and time efficiency to perform shortest distance estimation in large scale graph compared to other currently used strategies. Originality/value - This paper proposes a novel landmark selection strategy which regards the landmark selection problem as a binary combinational optimization problem. The original binary combinational optimization problem with constraints is transformed to a proper form of optimization objectives without constraints and the equivalence of these two optimization problems is proved. This novel strategy also utilizes a modified MOPSO integrating the mutation operator and crossover operator of genetic algorithm.
机译:目的-图形中一对节点之间的最短距离查询是一个具有广泛应用的经典问题。由于时间和空间的高度复杂性,针对具有大量亿用户和链接的社交网络之类的大规模图形,解决此问题的精确方法是不可行的。本文的目的是提出一种新颖的地标选择策略,该策略可以估计大规模图中的最短距离,并与当前使用的策略相比,阐明该策略的效率和准确性。设计/方法/方法-与现有策略不同,界标选择问题被视为包含两个优化目标和一个约束的二元组合优化问题。此外,将原始的具有约束的二进制组合优化问题转化为优化目标的适当形式,而没有任何其他约束,并且证明了解的等价性。最后,通过结合遗传算法的变异算子和交叉算子的改进的多目标粒子群优化算法(MOPSO),对优化问题进行求解。研究结果-使用四个大型的真实网络作为数据集来进行实验,实验结果表明,与目前使用的其他策略相比,该策略提高了精度和时间效率,可以在大型图中进行最短距离估计。创意/价值-本文提出了一种新颖的地标选择策略,该策略将地标选择问题视为二进制组合优化问题。将原始的具有约束的二元组合优化问题转化为无约束的优化目标形式,并证明了这两个优化问题的等价性。这种新颖的策略还利用了改进的MOPSO,它集成了遗传算法的变异算子和交叉算子。

著录项

  • 来源
    《Engineering Computations》 |2014年第8期|1635-1647|共13页
  • 作者单位

    Fujian Key Laboratory of Scientific and Engineering Computing, Fuzhou University, Fuzhou, China;

    Fujian Key Laboratory of Scientific and Engineering Computing, Fuzhou University, Fuzhou, China;

    Fujian Key Laboratory of Scientific and Engineering Computing, Fuzhou University, Fuzhou, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graphs; Landmarks; Multi-objective; Particle swarm optimization; Shortest distances;

    机译:图;地标;多目标;粒子群优化;最短距离;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号