首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Tensor Canonical Correlation Analysis for Multi-View Dimension Reduction
【24h】

Tensor Canonical Correlation Analysis for Multi-View Dimension Reduction

机译:用于多视图降维的张量典范相关分析

获取原文
获取原文并翻译 | 示例

摘要

Canonical correlation analysis (CCA) has proven an effective tool for two-view dimension reduction due to its profound theoretical foundation and success in practical applications. In respect of multi-view learning, however, it is limited by its capability of only handling data represented by two-view features, while in many real-world applications, the number of views is frequently many more. Although the ad hoc way of simultaneously exploring all possible pairs of features can numerically deal with multi-view data, it ignores the high order statistics (correlation information) which can only be discovered by simultaneously exploring all features. Therefore, in this work, we develop tensor CCA (TCCA) which straightforwardly yet naturally generalizes CCA to handle the data of an arbitrary number of views by analyzing the covariance tensor of the different views. TCCA aims to directly maximize the canonical correlation of multiple (more than two) views. Crucially, we prove that the main problem of multi-view canonical correlation maximization is equivalent to finding the best rank- approximation of the data covariance tensor, which can be solved efficiently using the well-known alternating least squares (ALS) algorithm. As a consequence, the high order correlation information contained in the different views is explored and thus a more reliable common subspace shared by all features can be obtained. In addition, a non-linear extension of TCCA is presented. Experiments on various challenge tasks, including large scale biometric structure prediction, internet advertisement classification, and web image annotation, demonstrate the effectiveness of the proposed method
机译:典型的相关分析(CCA)由于其深厚的理论基础和在实际应用中的成功,已被证明是一种有效的二维视图缩减工具。但是,就多视图学习而言,它仅能处理由两视图功能表示的数据的能力受到了限制,而在许多实际应用中,视图的数量通常会更多。尽管同时浏览所有可能的特征对的临时方法可以在数值上处理多视图数据,但它忽略了只能通过同时浏览所有特征才能发现的高阶统计量(相关信息)。因此,在这项工作中,我们开发了张量CCA(TCCA),它通过分析不同视图的协方差张量,直接自然地将CCA概括为可处理任意数量视图的数据。 TCCA旨在直接最大化多个(两个以上)视图的规范相关性。至关重要的是,我们证明了多视图规范相关最大化的主要问题等同于找到数据协方差张量的最佳秩近似,这可以使用众所周知的交替最小二乘(ALS)算法有效地解决。结果,探索了包含在不同视图中的高阶相关信息,因此可以获得所有特征共享的更可靠的公共子空间。另外,提出了TCCA的非线性扩展。通过对各种挑战性任务的实验,包括大规模生物特征结构预测,互联网广告分类和网络图像标注,证明了该方法的有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号