首页> 中文期刊> 《计算机应用研究》 >大规模多视图数据的自降维K-means算法

大规模多视图数据的自降维K-means算法

     

摘要

为了提升传统多视图K-means算法在高维数据中的聚类性能,提出了一种鲁棒性大规模多视图数据的自降维K-means算法RMSKMC(robust multi-view subKmeans clustering).通过寻找单个视图上的最优子空间实现高维数据的自降维,利用非负矩阵分解(NMF)对损失函数进行重构,使不同视图共享相同的聚类指示矩阵从而实现多视图信息互补,完成大规模多视图数据的聚类.实验结果表明,在大规模多视图数据集上,该算法比其他多视图聚类算法资源消耗更小,并且能够进行更为准确的聚类.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号