首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Reverse Keyword Search for Spatio-Textual Top- src='/images/tex/348.gif' alt='k'> Queries in Location-Based Services
【24h】

Reverse Keyword Search for Spatio-Textual Top- src='/images/tex/348.gif' alt='k'> Queries in Location-Based Services

机译:反向关键字搜索,用于时空文本顶部- src =“ / images / tex / 348.gif” alt =“ k”> 基于位置的服务中的查询

获取原文
获取原文并翻译 | 示例

摘要

Spatio-textual queries retrieve the most similar objects with respect to a given location and a keyword set. Existing studies mainly focus on how to efficiently find the top- result set given a spatio-textual query. Nevertheless, in many application scenarios, users cannot precisely formulate their keywords and instead prefer to choose them from some candidate keyword sets. Moreover, in information browsing applications, it is useful to highlight the objects with the tags (keywords) under which the objects have high rankings. Driven by these applications, we propose a novel query paradigm, namely everse keyword search for patio-extual top- ueries ( ). It returns the keywords under which a target object will be a spatio-textual top- result. To efficiently process the new query, we devise a novel hybrid index KcR-tree to store and summarize the spatial and textual information of objects. By accessing the high-level nodes of KcR-tree, we can estimate the rankings of the target object without accessing the actual objects. To further improve the performance, we propose three query optimization techniques, i.e., KcR*-tree, lazy upper-bound updating, and keyword set filtering. We also extend to allow the input location to be a spatial region instead of a point. Extensive experimental evaluation demonstrates the efficiency of our proposed query techniques in terms of both the computational cost and I/O cost.
机译:时空文本查询针对给定位置和关键字集检索最相似的对象。现有的研究主要集中在如何根据时空文本查询有效地找到最佳结果集。然而,在许多应用场景中,用户无法精确地制定其关键字,而是倾向于从某些候选关键字集中选择它们。此外,在信息浏览应用程序中,用具有高排名的标签(关键字)突出显示对象很有用。在这些应用的驱动下,我们提出了一种新颖的查询范式,即对露台外部位置()进行反向关键字搜索。它返回关键字,目标对象将根据该关键字成为时空文本的最高结果。为了有效地处理新查询,我们设计了一种新颖的混合索引KcR树来存储和总结对象的空间和文本信息。通过访问KcR-tree的高级节点,我们可以估计目标对象的排名,而无需访问实际对象。为了进一步提高性能,我们提出了三种查询优化技术,即KcR *-树,惰性上限更新和关键字集过滤。我们还扩展了允许输入位置为空间区域而不是点的位置。大量的实验评估从计算成本和I / O成本方面证明了我们提出的查询技术的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号