首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on > src='/images/tex/27071.gif' alt='k^+'> -buffer: An Efficient, Memory-Friendly and Dynamic src='/images/tex/348.gif' alt='k'> -buffer Framework
【24h】

src='/images/tex/27071.gif' alt='k^+'> -buffer: An Efficient, Memory-Friendly and Dynamic src='/images/tex/348.gif' alt='k'> -buffer Framework

机译: src =“ / images / tex / 27071.gif” alt =“ k ^ +”> -buffer:高效,内存友好且动态的 src =” / images / tex / 348.gif“ alt =” k “> -缓冲框架

获取原文
获取原文并翻译 | 示例

摘要

Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, -buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial -buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the value of are still missing. To this end, we introduce -buffer, a fast framework that accurately simulates the behavior of -buffer in a single rendering pass. Two memory-bounded data structures: (i) the and (ii) the are developed on the GPU to c- ncurrently maintain the -foremost fragments per pixel by exploring and . Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of -buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior -buffer variants in terms of memory usage, performance cost and image quality.
机译:深度排序的片段确定是许多基于图像的技术的基础,这些技术可模拟复杂的渲染效果。在对具有高深度复杂性的场景进行栅格化时,就所需的时间和空间而言,这也是一项具有挑战性的任务。当较低的图形内存要求极为重要时,可以将-buffer客观地视为最优选的框架,这可以有利地确保所有生成的片段的子集上的深度顺序正确。尽管已经引入了各种替代方案来部分或完全缓解初始缓冲区算法产生的明显质量问题,但代价是增加了内存或降低了性能,但是仍然缺少自动和动态计算的值的合适工具。为此,我们介绍了-buffer,这是一个快速框架,可在一次渲染过程中准确模拟-buffer的行为。两种内存受限的数据结构:(i)和(ii)在GPU上开发的,以通过探索和当前保持每个像素的最远片段。进一步引入了内存友好策略,以动态地(a)减少具有低深度复杂度频率的单个像素的浪费的内存分配;(b)通过简单的深度直方图分析,根据不同的应用目标和硬件限制,最小化-buffer的分配大小(c)通过固定内存深度排序机制管理本地GPU缓存。最后,提供了广泛的实验评估,从内存使用率,性能成本和图像质量方面证明了我们的工作优于所有先前的缓冲区变体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号