首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on > src='/images/tex/348.gif' alt='k'> NNVWC: An Efficient src='/images/tex/348.gif' alt='k'> -Nearest Neighbors Approach Based on Various-Widths Clustering
【24h】

src='/images/tex/348.gif' alt='k'> NNVWC: An Efficient src='/images/tex/348.gif' alt='k'> -Nearest Neighbors Approach Based on Various-Widths Clustering

机译: src =“ / images / tex / 348.gif” alt =“ k”> NNVWC:高效的 src =” / images / tex / 348.gif“ alt =” k“> -基于各种宽度聚类的最近邻居方法

获取原文
获取原文并翻译 | 示例

摘要

The -nearest neighbor approach (-NN) has been extensively used as a powerful non-parametric technique in many scientific and engineering applications. However, this approach incurs a large computational cost. Hence, this issue has become an active research field. In this work, a novel -NN approach based on various-widths clustering, named NNVWC, to efficiently find -NNs for a query object from a given data set, is presented. NNVWC does clustering using various widths, where a data set is clustered with a global width first and each produced cluster that meets the predefined criteria is recursively clustered with its own local width that suits its distribution. This reduces the clustering time, in addition to balancing the number of produced clusters and their respective sizes. Maximum efficiency is achieved by using triangle inequality to prune unlikely clusters. Experimental results demonstrate that NNVWC performs well in finding -NNs for query objects compared to a number of -NN search algorithms, especially for a data set with high dimensions, various distributions and large size.
机译:近邻法(-NN)已在许多科学和工程应用中广泛用作一种强大的非参数技术。但是,这种方法导致很大的计算成本。因此,该问题已成为活跃的研究领域。在这项工作中,提出了一种新颖的基于-NN的各种宽度聚类的-NN方法,可以从给定的数据集中有效地找到查询对象的-NN。 NNVWC会使用各种宽度进行聚类,其中首先将数据集与全局宽度进行聚类,然后将满足预定义条件的每个产生的聚类与适合其分布的自身局部宽度进行递归聚类。除了平衡产生的簇的数量及其各自的大小之外,这还减少了簇的时间。通过使用三角形不等式修剪不太可能的群集,可以实现最大效率。实验结果表明,与许多-NN搜索算法相比,NNVWC在查找查询对象的-NN方面表现出色,尤其是对于具有高维,各种分布和大尺寸的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号