首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Efficient Graph Similarity Search Over Large Graph Databases
【24h】

Efficient Graph Similarity Search Over Large Graph Databases

机译:大型图数据库上的有效图相似度搜索

获取原文
获取原文并翻译 | 示例

摘要

Since many graph data are often noisy and incomplete in real applications, it has become increasingly important to retrieve graphs in the graph database that approximately match the query graph , rather than exact graph matching. In this paper, we study the problem of graph similarity search, which retrieves graphs that are similar to a given query graph under the constraint of graph edit distance. We propose a systematic method for edit-distance based similarity search problem. Specifically, we derive two lower bounds, i.e., partition-based and branch-based bounds, from different perspectives. More importantly, a hybrid lower bound incorporating both ideas of the two lower bounds is proposed, which is theoretically proved to have higher (at least not lower) pruning power than using the two lower bounds together. We also present a uniform index structure, namely u-tree, to facilitate effective pruning and efficient query processing. Extensive experiments confirm that our proposed approach outperforms the existing approaches significantly, in terms of both the pruning power and query response time.
机译:由于在实际应用中许多图形数据通常嘈杂且不完整,因此在图形数据库中检索近似匹配查询图形而不是精确图形匹配的图形变得越来越重要。在本文中,我们研究了图相似搜索的问题,该问题在图编辑距离的约束下检索与给定查询图相似的图。我们提出了一种基于编辑距离的相似性搜索问题的系统方法。具体来说,我们从不同的角度得出两个下界,即基于分区的边界和基于分支的边界。更重要的是,提出了一个混合的下界,将两个下界的两种思想结合在一起,从理论上证明,它比同时使用两个下界具有更高(至少不更低)的修剪能力。我们还提出了统一的索引结构,即u树,以促进有效的修剪和有效的查询处理。大量的实验证实,在修剪能力和查询响应时间方面,我们提出的方法明显优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号