首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Efficient Similarity Search for Sets over Graphs
【24h】

Efficient Similarity Search for Sets over Graphs

机译:高效相似性搜索图形的集合

获取原文
获取原文并翻译 | 示例

摘要

Measuring similarities among different nodes is important in graph analysis tasks, such as link prediction, and recommendation. Among different similarity measures, SimRank is one of the most popular and promising ones, and has received a lot of research attention. While most current studies focus on single-pair, single-source/top-k, and all-pairs SimRank computation, few of them have studied finding similar pairs given a set of node pairs, which has attractive applications in personalized search and recommendation tasks. In this paper, we present Carmo, an efficient algorithm for retrieving the top-k similarities from an arbitrary set of pairs. In addition, we introduce two types of indexes to boost the efficiency of Carmo: one is hub-based, the other is tree-based. We show the effectiveness and efficiency of our proposed methods by extensive experiments.
机译:测量不同节点之间的相似性在图形分析任务中是重要的,例如链路预测和推荐。在不同的相似性措施中,SimRank是最受欢迎和最有希望的,并获得了很多研究的关注。虽然最新的研究专注于单对,单源/顶级-K和全对Simrank计算,但是它们中的很少有很少的研究找到类似的一组节点对,这在个性化搜索和推荐任务中具有吸引力的应用程序。在本文中,我们呈现Carmo,一种用于从任意一组中检索顶-K相似性的高效算法。此外,我们介绍了两种类型的索引来提高Carmo的效率:一个是基于集线器的,另一个是基于树的。我们通过广泛的实验表明了我们提出的方法的有效性和效率。

著录项

  • 来源
  • 作者单位

    Shenzhen Univ Shenzhen Inst Comp Sci Shenzhen 518060 Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Clear Water Bay Hong Kong Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Clear Water Bay Hong Kong Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Clear Water Bay Hong Kong Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Clear Water Bay Hong Kong Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Clear Water Bay Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SimRank; graph theory; similarity measure;

    机译:simrank;图论;相似度措施;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号