首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Multicategory Crowdsourcing Accounting for Variable Task Difficulty, Worker Skill, and Worker Intention
【24h】

Multicategory Crowdsourcing Accounting for Variable Task Difficulty, Worker Skill, and Worker Intention

机译:可变任务难度,工人技能和工人意图的多类别众包会计

获取原文
获取原文并翻译 | 示例

摘要

Crowdsourcing allows instant recruitment of workers on the web to annotate image, webpage, or document databases. However, worker unreliability prevents taking a worker’s responses at “face value”. Thus, responses from multiple workers are typically aggregated to more reliably infer ground-truth answers. We study two approaches for crowd aggregation on multicategory answer spaces: stochastic modeling-based and deterministic objective function-based. Our stochastic model for answer generation plausibly captures the interplay between worker skills, intentions, and task difficulties and captures a broad range of worker types. Our deterministic objective-based approach aims to maximize the average aggregate confidence of weighted plurality crowd decision making. In both approaches, we explicitly model the and of individual workers, which is exploited for improved crowd aggregation. Our methods are applicable in both unsupervised and semi-supervised settings, and also when the batch of tasks is , i.e., from multiple domains, with task-dependent answer spaces. As observed experimentally, the proposed methods can defeat “tyranny of the masses”, i.e., they are especially advantageous when there is an (a priori unknown) minority of skilled workers amongst a large crowd of unskilled (and malicious) workers.
机译:众包允许即时在Web上招聘工人来注释图像,网页或文档数据库。但是,工人不可靠会阻止他们以“面值”来回应。因此,通常会汇总来自多个工作人员的响应,以更可靠地推断出真实的答案。我们研究了用于在多类别答案空间上进行人群聚集的两种方法:基于随机建模的方法和基于确定性目标函数的方法。我们用于生成答案的随机模型合理地捕捉了工人技能,意图和任务难度之间的相互作用,并捕捉了广泛的工人类型。我们基于目标的确定性方法旨在最大化加权多元人群决策的平均总体置信度。在这两种方法中,我们都明确地对单个工人的和建模,这被用于改善人群聚集。我们的方法适用于无监督和半监督设置,也适用于批次任务(即来自多个域,具有依赖于任务的答案空间)的情况。如实验观察到的那样,所提出的方法可以击败“群众暴政”,即,在一大批不熟练的(和恶意的)工人中,(少数先验未知)熟练工人的情况下,它们特别有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号