首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Enhancing Team Composition in Professional Networks: Problem Definitions and Fast Solutions
【24h】

Enhancing Team Composition in Professional Networks: Problem Definitions and Fast Solutions

机译:增强专业网络中的团队组成:问题定义和快速解决方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study ways to enhance the composition of teams based on new requirements in a collaborative environment. We focus on recommending team members who can maintain the team's performance by minimizing changes to the team's skills and social structure. Our recommendations are based on computing team-level similarity, which includes skill similarity, structural similarity as well as the synergy between the two. Current heuristic approaches are one-dimensional and not comprehensive, as they consider the two aspects independently. To formalize team-level similarity, we adopt the notion of graph kernel of attributed graphs to encompass the two aspects and their interaction. To tackle the computational challenges, we propose a family of fast algorithms by (a) designing effective pruning strategies, and (b) exploring the smoothness between the existing and the new team structures. Extensive empirical evaluations on real world datasets validate the effectiveness and efficiency of our algorithms.
机译:在本文中,我们研究了在协作环境中基于新要求增强团队组成的方法。我们专注于推荐可以通过最小化团队技能和社会结构改变来维持团队绩效的团队成员。我们的建议基于计算团队级别的相似性,其中包括技能相似性,结构相似性以及两者之间的协同作用。当前的启发式方法是一维的,并不全面,因为它们独立地考虑了这两个方面。为了形式化团队级别的相似性,我们采用属性图的图核概念来涵盖这两个方面及其相互作用。为了解决计算难题,我们通过(a)设计有效的修剪策略,以及(b)探索现有团队与新团队结构之间的平滑度,提出了一系列快速算法。对现实世界数据集的大量经验评估证明了我们算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号