首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Collaboratively Tracking Interests for User Clustering in Streams of Short Texts
【24h】

Collaboratively Tracking Interests for User Clustering in Streams of Short Texts

机译:协作跟踪短文本流中的用户聚类兴趣

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we aim at tackling the problem of user clustering in the context of their published short text streams. Clustering users by short text streams is more challenging than in the case of long documents associated with them as it is difficult to track users' dynamic interests in streaming sparse data. To obtain better user clustering performance, we propose two user collaborative interest tracking models that aim at tracking changes of each user's dynamic topic distributions in collaboration with their followees' dynamic topic distributions, based both on the content of current short texts and the previously estimated distributions. Our models can be either short-term or long-term dependency topic models. Short-term dependency model collaboratively tracks users' interests based on users' topic distributions at the previous time period only, whereas long-term dependency model collaboratively tracks users' interests based on users' topic distributions at multiple time periods in the past. We also propose two collapsed Gibbs sampling algorithms for collaboratively inferring users' dynamic interests for their clustering in our short-term and long-term dependency topic models, respectively. We evaluate our proposed models via a benchmark dataset consisting of Twitter users and their tweets. Experimental results validate the effectiveness of our proposed models that integrate both users' and their collaborative interests for user clustering by short text streams.
机译:在本文中,我们旨在解决用户发布的短文本流中的用户聚类问题。通过短文本流对用户进行聚类比在与长文本流相关联的情况下更具挑战性,因为很难跟踪用户对流传输稀疏数据的动态兴趣。为了获得更好的用户聚类性能,我们提出了两个用户协作兴趣跟踪模型,该模型旨在根据当前短文本的内容和先前估计的分布,与他们的关注者的动态主题分布协作跟踪每个用户的动态主题分布的变化。 。我们的模型可以是短期或长期依赖主题模型。短期依赖性模型仅根据前一个时间段的用户主题分布来协作跟踪用户的兴趣,而长期依赖性模型则基于过去多个时间段的用户主题分布来协作地跟踪用户的兴趣。我们还提出了两种折叠的Gibbs采样算法,分别在我们的短期和长期依赖性主题模型中协作推断用户对其聚类的动态兴趣。我们通过一个包含Twitter用户及其推文的基准数据集评估我们提出的模型。实验结果验证了我们提出的模型的有效性,该模型整合了用户及其协作兴趣,可以通过短文本流将用户聚类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号