首页> 外文期刊>ACM SIGIR FORUM >Explainable User Clustering in Short Text Streams
【24h】

Explainable User Clustering in Short Text Streams

机译:短文本流中可解释的用户群集

获取原文
获取原文并翻译 | 示例

摘要

User clustering has been studied from different angles: behaviorbased,rnto identify similar browsing or search patterns, and contentbased,rnto identify shared interests. Once user clusters have beenrnfound, they can be used for recommendation and personalization.rnSo far, content-based user clustering has mostly focused on staticrnsets of relatively long documents. Given the dynamic nature ofrnsocial media, there is a need to dynamically cluster users in therncontext of short text streams. User clustering in this setting isrnmore challenging than in the case of long documents as it is difficultrnto capture the users’ dynamic topic distributions in sparserndata settings. To address this problem, we propose a dynamic userrnclustering topic model (or UCT for short). UCT adaptively tracksrnchanges of each user’s time-varying topic distribution based bothrnon the short texts the user posts during a given time period and onrnthe previously estimated distribution. To infer changes, we proposerna Gibbs sampling algorithm where a set of word-pairs fromrneach user is constructed for sampling. The clustering results arernexplainable and human-understandable, in contrast to many otherrnclustering algorithms. For evaluation purposes, we work with arndataset consisting of users and tweets from each user. Experimentalrnresults demonstrate the effectiveness of our proposed clusteringrnmodel compared to state-of-the-art baselines.
机译:从不同角度研究了用户聚类:基于行为,以标识相似的浏览或搜索模式;基于内容,以标识共享兴趣。一旦找到用户集群,就可以将它们用于推荐和个性化。到目前为止,基于内容的用户集群主要集中在相对较长文档的静态集上。考虑到社交媒体的动态性质,需要在短文本流的上下文中动态地将用户聚类。与使用长文档的情况相比,此设置中的用户聚类更具挑战性,因为很难在稀疏数据设置中捕获用户的动态主题分布。为了解决这个问题,我们提出了一个动态的用户集群主题模型(简称UCT)。 UCT会根据用户在给定时间段内发布的短文本以及先前估计的分布来自适应地跟踪每个用户随时间变化的主题分布的变化。为了推断变化,我们提出了Gibbs采样算法,其中构造了来自每个用户的一组单词对以进行采样。与许多其他聚类算法相比,聚类结果是可解释的并且是人类可理解的。为了进行评估,我们使用由用户和每个用户的tweet组成的arndataset。实验结果证明,与最新的基准相比,我们提出的聚类模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号