首页> 外文期刊>IEEE Transactions on Information Theory >On minimum Lee weights of Hensel lifts of some binary BCH codes
【24h】

On minimum Lee weights of Hensel lifts of some binary BCH codes

机译:关于某些二进制BCH码的Hensel电梯的最小Lee权重

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the paper of Calderbank, McGuire, Kumar, and Helleseth (see ibid., vol.42, no.1, p.217-26, Jan. 1996) we prove the following result: for any given positive integer l/spl ges/3, the minimum Lee weights of Hensel lifts (to Z/sub 4/) of binary primitive BCH codes of length 2/sup m/-1 and designed distance 2/sup l/-1 is just 2/sup l/-1 when (a) m can be divided by l or (b) m is sufficiently large. For Hensel lifts of binary primitive BCH codes of arbitrary designed distance /spl delta//spl ges/4, we also prove that their minimum Lee weight d/sub L//spl les/2([log/sub 2//spl delta/]+1)-1 when m is sufficiently large. Moreover, a result about minimum Lee weights of certain Z/sub 4/ codes defined by Galois rings, which is similar to the result in Calderbank et al., is proved.
机译:根据Calderbank,McGuire,Kumar和Helleseth的论文(同上,第42卷,第1期,第217-26页,1996年1月),我们证明了以下结果:对于任何给定的正整数l / spl ges / 3,长度为2 / sup m / -1和设计距离2 / sup l / -1的二进制原始BCH码的Hensel提升的最小Lee权重(至Z / sub 4 /)仅为2 / sup l /当(a)m可以除以l或(b)m时的-1足够大。对于任意设计距离/ spl delta // spl ges / 4的二进制基本BCH码的Hensel提升,我们还证明了它们的最小Lee权重d / sub L // spl les / 2([log / sub 2 // spl delta /] + 1)-1,当m足够大时。此外,证明了关于由Galois环定义的某些Z / sub 4 /码的最小Lee权重的结果,类似于Calderbank等人的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号