首页> 外文期刊>IEEE Transactions on Information Theory >Error Exponents for Variable-Length Block Codes With Feedback and Cost Constraints
【24h】

Error Exponents for Variable-Length Block Codes With Feedback and Cost Constraints

机译:具有反馈和成本约束的可变长度分组码的误差指数

获取原文
获取原文并翻译 | 示例

摘要

Variable-length block-coding schemes are investigated for discrete memoryless channels with ideal feedback under cost constraints. Upper and lower bounds are found for the minimum achievable probability of decoding error $P_{e,min }$ as a function of constraints $R, {cal P},$ and $overline tau $ on the transmission rate, average cost, and average block length, respectively. For given $R$ and $ {cal P}$, the lower and upper bounds to the exponent $-(ln P_{e,min })/overline tau $ are asymptotically equal as $overline tau to infty $. The resulting reliability function, $lim _{overline tau to infty } (-ln P_{e,min })/overline tau $, as a function of $R$ and $ {cal P}$, is concave in the pair $(R, {cal P})$ and generalizes the linear reliability function of Burnashev to include cost constraints. The results are generalized to a class of discrete-time memoryless channels with arbitrary alphabets, including additive Gaussian noise channels with amplitude and power constraints.
机译:研究了在成本约束下具有理想反馈的离散无记忆通道的可变长度块编码方案。找到上限和下限,作为解码误差$ P_ {e,min} $的最小可实现概率,它是传输速率,平均成本和条件的约束$ R,{cal P},$和$ overline tau $的函数平均块长度。对于给定的$ R $和$ {cal P} $,指数$-(ln P_ {e,min})/ overline tau $的上下界渐近等于$ overline tau to infty $。所得的可靠性函数$ lim _ {overtal tau to infty}(-ln P_ {e,min})/ overline tau $,作为$ R $和$ {cal P} $的函数,在对$中是凹的(R,{cal P})$并推广Burnashev的线性可靠性函数以包括成本约束。结果被推广到具有任意字母的一类离散时间无记忆通道,包括具有幅度和功率约束的加性高斯噪声通道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号