首页> 外文期刊>IEEE Transactions on Information Theory >Approximation Algorithms for Wavelet Transform Coding of Data Streams
【24h】

Approximation Algorithms for Wavelet Transform Coding of Data Streams

机译:数据流小波变换编码的近似算法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of finding a $B$-term wavelet representation of a given discrete function $f in {cal R}^n$ whose distance from $f$ is minimized. The problem is well understood when we seek to minimize the Euclidean distance between $f$ and its representation. The first-known algorithms for finding provably approximate representations minimizing general $ell_p$ distances (including $ell_infty$) under a wide variety of compactly supported wavelet bases are presented in this paper. For the Haar basis, a polynomial time approximation scheme is demonstrated. These algorithms are applicable in the one-pass sublinear-space data stream model of computation. They generalize naturally to multiple dimensions and weighted norms. A universal representation that provides a provable approximation guarantee under all $p$-norms simultaneously; and the first approximation algorithms for bit-budget versions of the problem, known as adaptive quantization, are also presented. Further, it is shown that the algorithms presented here can be used to select a basis from a tree-structured dictionary of bases and find a $B$ -term representation of the given function that provably approximates its best dictionary-basis representation.
机译:本文解决了在{cal R} ^ n $中找到给定离散函数$ f的$ B $项小波表示的问题,该函数与$ f $的距离最小。当我们试图最小化$ f $与它的表示之间的欧几里得距离时,这个问题已广为人知。本文介绍了在多种紧要支持的小波基下寻找可证明的近似表示以最小化一般$ ell_p $距离(包括$ ell_infty $)的算法。以Haar为基础,演示了多项式时间近似方案。这些算法适用于一遍子线性空间数据流计算模型。它们自然地概括为多个维度和加权规范。一种通用表示形式,可同时在所有$ p $范数下提供可证明的近似保证;还介绍了该问题的位预算版本的第一种近似算法,即自适应量化。此外,示出了这里提出的算法可用于从树的基数的字典中选择基数,并找到可证明地近似其最佳字典基数表示的给定函数的$ B $项表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号