首页> 外文期刊>Information Theory, IEEE Transactions on >Computation and Estimation of Generalized Entropy Rates for Denumerable Markov Chains
【24h】

Computation and Estimation of Generalized Entropy Rates for Denumerable Markov Chains

机译:可数马氏链广义熵率的计算与估计。

获取原文
获取原文并翻译 | 示例

摘要

We study entropy rates of random sequences for general entropy functionals including the classical Shannon and Rényi entropies and the more recent Tsallis and Sharma–Mittal ones. In the first part, we obtain an explicit formula for the entropy rate for a large class of entropy functionals, as soon as the process satisfies a regularity property known in dynamical systems theory as the quasi-power property. Independent and identically distributed sequence of random variables naturally satisfy this property. Markov chains are proven to satisfy it, too, under simple explicit conditions on their transition probabilities. All the entropy rates under study are thus shown to be either infinite or zero except at a threshold where they are equal to Shannon or Rényi entropy rates up to a multiplicative constant. In the second part, we focus on the estimation of the marginal generalized entropy and entropy rate for parametric Markov chains. Estimators with good asymptotic properties are built through a plug-in procedure using a maximum likelihood estimation of the parameter.
机译:我们研究一般熵函数的随机序列的熵率,这些函数包括经典的Shannon和Rényi熵以及最近的Tsallis和Sharma-Mittal熵。在第一部分中,只要过程满足动力学系统理论中称为准功率性质的规则性质,我们就可以为一大类熵函数获得一个明确的熵率公式。自然且独立且分布均匀的随机变量序列自然满足此属性。事实证明,马尔可夫链也可以在简单的显式条件下满足其转移概率。因此,所研究的所有熵率都显示为无穷大或为零,除非在等于香农或伦尼熵率的乘积常数以下的阈值处。在第二部分中,我们重点研究参数马尔可夫链的边际广义熵和熵率的估计。通过使用参数的最大似然估计的插件过程来构建具有良好渐近特性的估计器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号