首页> 外文期刊>Information Theory, IEEE Transactions on >Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations
【24h】

Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations

机译:具有多重多项式和同时多项式逼近的多元插值的更快算法

获取原文
获取原文并翻译 | 示例

摘要

The interpolation step in the Guruswami-Sudan algorithm is a bivariate interpolation problem with multiplicities commonly solved in the literature using either structured linear algebra or basis reduction of polynomial lattices. This problem has been extended to three or more variables; for this generalization, all fast algorithms proposed so far rely on the lattice approach. In this paper, we reduce this multivariate interpolation problem to a problem of simultaneous polynomial approximations, which we solve using fast structured linear algebra. This improves the best known complexity bounds for the interpolation step of the list-decoding of Reed-Solomon codes, Parvaresh-Vardy codes, and folded Reed-Solomon codes. In particular, for Reed-Solomon list-decoding with re-encoding, our approach has complexity , where , and are the list size, the multiplicity, the number of sample points, and the dimension of the code, and is the exponent of linear algebra; this accelerates the previously fastest known algorithm by a factor of .
机译:Guruswami-Sudan算法中的插值步骤是一个双变量插值问题,在文献中通常使用结构化线性代数或多项式格的基本约简来解决多重性。这个问题已经扩展到三个或更多变量。为了进行这种概括,到目前为止提出的所有快速算法都依赖于晶格方法。在本文中,我们将这个多元插值问题简化为同时多项式逼近的问题,我们使用快速结构化线性代数解决了该问题。这改善了里德-所罗门码,Parvaresh-Vardy码和折叠里德-所罗门码的列表解码的内插步骤的最著名的复杂度界限。特别是,对于具有重新编码的Reed-Solomon列表解码,我们的方法具有复杂性,其中和是列表大小,多重性,样本点数量和代码尺寸,并且是线性指数代数这将以前最快的已知算法加速了1/3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号