首页> 外文期刊>Journal of symbolic computation >Faster sparse multivariate polynomial interpolation of straight-line programs
【24h】

Faster sparse multivariate polynomial interpolation of straight-line programs

机译:直线程序的更快的稀疏多元多项式插值

获取原文
获取原文并翻译 | 示例

摘要

Given a straight-line program whose output is a polynomial function of the inputs, we present a new algorithm to compute a concise representation of that unknown function. Our algorithm can handle any case where the unknown function is a multivariate polynomial, with coefficients in an arbitrary finite field, and with a reasonable number of nonzero terms but possibly very large degree. It is competitive with previously known sparse interpolation algorithms that work over an arbitrary finite field, and provides an improvement when there are a large number of variables. Published by Elsevier Ltd.
机译:给定一个直线程序,其输出是输入的多项式函数,我们提出一种新算法来计算该未知函数的简洁表示。我们的算法可以处理未知函数是多元多项式,系数在任意有限域中,合理数量的非零项但可能具有很大程度的任何情况。它与以前在任意有限域上工作的稀疏插值算法相比具有竞争优势,并且在存在大量变量的情况下提供了一种改进。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号