首页> 外文期刊>Information Theory, IEEE Transactions on >A Generalization of Peres’s Algorithm for Generating Random Bits From Loaded Dice
【24h】

A Generalization of Peres’s Algorithm for Generating Random Bits From Loaded Dice

机译:Peres的从加载的骰子生成随机位的算法的一般化

获取原文
获取原文并翻译 | 示例

摘要

Peres’s algorithm produces unbiased random bits from biased coin tosses, recursively, using the famous von Neumann’s method as its base. The algorithm is simple and elegant, but, at first glance, appears to work almost like magic and its generalization is elusive. We generalize the method to generate unbiased random bits from loaded dice, i.e., many-valued Bernoulli source. The generalization is asymptotically optimal in its output rate as is the original Peres’s algorithm. Three-valued case is discussed in detail, and then other many-faced cases are considered.
机译:Peres的算法以著名的冯·诺依曼(von Neumann)的方法为基础,递归地从偏向硬币投掷中产生无偏随机比特。该算法既简单又优雅,但是乍一看似乎可以像魔术一样工作,并且泛化起来并不容易。我们概括了从加载的骰子(即多值Bernoulli源)生成无偏随机位的方法。与原始的Peres算法一样,泛化在输出速率上是渐近最优的。详细讨论了三值情况,然后考虑了其他多面情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号