首页> 外文期刊>Information Theory, IEEE Transactions on >Construction of de Bruijn Sequences From LFSRs With Reducible Characteristic Polynomials
【24h】

Construction of de Bruijn Sequences From LFSRs With Reducible Characteristic Polynomials

机译:具有可约性特征多项式的LFSR的de Bruijn序列的构造

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a family of new de Bruijn sequences is proposed through the construction of maximum-length nonlinear feedback shift registers (NFSRs). Let be a positive integer and be the primitive polynomials in with their degrees strictly increasing and pairwise coprime. We determine the cycle structure and adjacency graphs of linear feedback shift registers (LFSRs) with characteristic polynomial . In the case that , an algorithm is proposed to produce maximum-length NFSRs from these LFSRs, and it is shown that the algorithm can generate -stage maximum-length NFSRs with memory complexity and time complexity , where and are the degrees of and , respectively. Finally, we illustrate the proposed algorithm in the case of . In this case, we prove that for any integer
机译:通过构造最大长度的非线性反馈移位寄存器(NFSR),提出了一系列新的de Bruijn序列。设为一个正整数,并作为其次数严格增加且成对互质的本原多项式。我们确定具有特征多项式的线性反馈移位寄存器(LFSR)的周期结构和邻接图。在这种情况下,提出了一种从这些LFSR生成最大长度NFSR的算法,并且表明该算法可以生成具有存储器复杂度和时间复杂度的阶段最大长度NFSR,其中和分别是和的度数。 。最后,我们说明了在情况下的算法。在这种情况下,我们证明对于任何整数

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号