首页> 外文期刊>Cryptography and Communications >Construction of de Bruijn sequences from product of two irreducible polynomials
【24h】

Construction of de Bruijn sequences from product of two irreducible polynomials

机译:由两个不可约多项式的乘积构造de Bruijn序列

获取原文
获取原文并翻译 | 示例

摘要

We study a class of Linear Feedback Shift Registers (LFSRs) with characteristic polynomial integral(x) = p(x) q(x) where p(x) and q(x) are distinct irreducible polynomials in F-2[x]. Important properties of the LFSRs, such as the cycle structure and the adjacency graph, are derived. A method to determine a state belonging to each cycle and a generic algorithm to find all conjugate pairs shared by any pair of cycles are given. The process explicitly determines the edges and their labels in the adjacency graph. The results are then combined with the cycle joining method to efficiently construct a new class of de Bruijn sequences. An estimate of the number of resulting sequences is given. In some cases, using cyclotomic numbers, we can determine the number exactly.
机译:我们研究了一类具有特征多项式积分(x)= p(x)q(x)的线性反馈移位寄存器(LFSR),其中p(x)和q(x)是F-2 [x]中不同的不可约多项式。得出了LFSR的重要属性,例如循环结构和邻接图。给出了一种确定属于每个循环的状态的方法和一种通用算法,以找到任何一对循环共享的所有共轭对。该过程在邻接图中显式确定边及其标签。然后将结果与循环连接方法相结合,以有效地构建一类新的de Bruijn序列。给出了所得序列数的估计。在某些情况下,使用圈数,我们可以准确地确定该数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号