首页> 外文期刊>IEEE Transactions on Information Theory >Learning High-Dimensional Generalized Linear Autoregressive Models
【24h】

Learning High-Dimensional Generalized Linear Autoregressive Models

机译:学习高维广义线性自回归模型

获取原文
获取原文并翻译 | 示例

摘要

Vector autoregressive models characterize a variety of time series in which linear combinations of current and past observations can be used to accurately predict future observations. For instance, each element of an observation vector could correspond to a different node in a network, and the parameters of an autoregressive model would correspond to the impact of the network structure on the time series evolution. Often, these models are used successfully in practice to learn the structure of social, epidemiological, financial, or biological neural networks. However, little is known about statistical guarantees on the estimates of such models in non-Gaussian settings. This paper addresses the inference of the autoregressive parameters and associated network structure within a generalized linear model framework that includes Poisson and Bernoulli autoregressive processes. At the heart of this analysis is a sparsity-regularized maximum likelihood estimator. While sparsity-regularization is well-studied in the statistics and machine learning communities, those analysis methods cannot be applied to autoregressive generalized linear models because of the correlations and potential heteroscedasticity inherent in the observations. Sample complexity bounds are derived using a combination of martingale concentration inequalities and modern empirical process techniques for dependent random variables. These bounds, which are supported by several simulation studies, characterize the impact of various network parameters on the estimator performance.
机译:向量自回归模型描述了各种时间序列,其中当前和过去观测值的线性组合可用于准确预测未来观测值。例如,观察向量的每个元素可能对应于网络中的不同节点,并且自回归模型的参数将对应于网络结构对时间序列演化的影响。通常,在实践中成功地使用了这些模型来学习社会,流行病学,财务或生物学神经网络的结构。但是,对于在非高斯环境中对此类模型的估计值的统计保证知之甚少。本文讨论了在包含Poisson和Bernoulli自回归过程的广义线性模型框架内自回归参数和相关网络结构的推断。该分析的核心是稀疏性调整的最大似然估计器。尽管在统计和机器学习社区中对稀疏性正则化进行了深入研究,但是由于观察结果固有的相关性和潜在的异方差性,这些分析方法无法应用于自回归广义线性模型。样本复杂度界限是使用mar浓度不等式和现代经验过程技术的组合得出的,用于因变量。这些界限得到了一些仿真研究的支持,它们表征了各种网络参数对估计器性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号